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Abstract

A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood
perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use dif-
ferent concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the num-
ber of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which
estimates 27-3 parameters for 7 taxa). Depending on the characteristics of the dataset, the likelihood obtained with this
approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because
of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological data-
sets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an informa-
tion-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood
approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological

datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.

© The Willi Hennig Society 2019.

Introduction

Although methods of phylogenetic inference (maxi-
mume-likelihood, ML) based on likelihood and detailed
models of evolution assuming a common mechanism
are currently widespread, the arguments that have
been advanced for a universal preference of these
methods over parsimony (maximum-parsimony, MP)
are not entirely satisfactory. This is especially true in
the case of phylogenetic analyses of morphological
characters (where the Mk model of Lewis, 2001 is
often used in ML or Bayesian analyses), but a case
could be made as well for MP methods in the case of
molecular sequences (e.g. Goloboff et al., 2017: 433).

Several lines of argument have been advanced
against MP by proponents of models. One is based on
simulations (e.g. Wright and Hillis, 2014; O’Reilly
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et al., 2016; Puttick et al., 2017), using a known model
tree to generate datasets and studying the degree to
which the trees inferred by different methods approxi-
mate the model tree. Goloboff et al. (2017, 2018a)
replied to these arguments, showing that (depending
on the model used to generate the data) either parsi-
mony or model-based methods may perform best.
And, in addition to generating their datasets under a
common mechanism (which favours model-based infer-
ence), Puttick et al. (2017) only reported comparisons
for the worst options (k values) of implied weighting
parsimony they examined. Goloboff et al. (2018b) and
Smith (2019) report that, even for datasets generated
under the Mk model with a common mechanism, the
results of parsimony and model-based methods are of
almost the same quality when comparisons are per-
formed more carefully.

A second line dismisses MP on the grounds that the
assumptions made by model-based methods are bio-
logically (or biochemically) justified and make these
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methods superior (e.g. Steel, 2005; Huelsenbeck et al.,
2011). However, Goloboff et al. (2018b) showed, with
a hypothesis testing approach, that empirical datasets
reject the common mechanism assumed by standard
ML methods (particularly for morphology, but also in
a significant fraction of molecular datasets). That find-
ing of Goloboff et al. (2018b) both weakens the idea
that the Mk model reflects a biological reality and
shows that simulations based on assuming a common
mechanism are of little empirical relevance.

A third line of reasoning to defend ML methods is
that the estimations based on MP are too highly param-
eterized (Lewis, 2001; Steel, 2002). Some early authors
had considered that ML is preferable over MP, because
MP is too simplistic a model (e.g. Yang, 1996). However,
after Tuffley and Steel (1997) proposed the no-common-
mechanism (NCM) model, some authors continued to
favour ML, now on the grounds that MP is too complex
a model (e.g. Lewis, 2001; Huelsenbeck et al., 2008,
2011). In the NCM model, the length of every branch of
the tree is independently set for every character, causing
ML to select the exact same trees as MP, but requiring
estimation of a large number of parameters. The Akaike
information criterion (AIC; Akaike, 1973; Posada and
Buckley, 2004) is widely used to evaluate models, based
on a tradeoff between model fit and complexity. Holder
et al. (2010) showed that, given the large number of
parameters in NCM, it is numerically impossible for the
AIC to select NCM over standard ML models (as a
result of the interplay between possible increases in like-
lihood by freeing branch lengths to vary for each char-
acter, and the number of parameters added to the
estimation).

While it is true that the NCM model of Tuffley and
Steel (1997) is very parameter-rich, alternative formu-
lations of MP involving simpler estimations are in fact
possible (e.g. Goloboff, 2003). Huelsenbeck et al.
(2008: 406), for example, noted that “the Tuffley and
Steel (1997) model is just one of several that gives a
correspondence between the parsimony and maximum
likelihood methods.” Holder et al. (2010: 478-479)
were also aware of this, and they explicitly noted that
their result should not be interpreted as indicating that
the AIC will always prefer ML over any formulation
of MP—just over the NCM formulation of MP. How-
ever, despite the warning of Holder et al. (2010), the
idea that MP always requires estimating too many
parameters has been overgeneralized by supporters of
model-based methods. For example, O’Reilly et al.
(2018: 632) mistakenly claimed that Goloboff et al.’s
(2017) simulations assumed the NCM model and were
thus vitiated by using a large number of parameters.
This claim conflates the number of parameters used in
a simulation with that used in an estimation process,
but it is incorrect even from that perspective: Goloboff
et al. (2017) used MP to infer trees, but their data

were neither generated nor analysed with NCM.!
O’Reilly et al. (2018) clearly paid no heed to Huelsen-
beck et al.’s (2008) or Holder et al.’s (2010) warnings
about MP not being a synonym of NCM.

Despite the fact that alternative implementations of
MP might be more favourably compared to standard
ML by different model-selection methods, no actual
comparison has ever been published. Such comparison
is made difficult by the scarcity of implementations
that produce results similar to parsimony. The aim of
this paper is to conduct that comparison.

First, we consider less highly parameterized Poisson
models that behave similarly to MP—both equal
weights parsimony (EWP) and implied weights parsi-
mony (IWP; Goloboff, 1993). IWP used to be viewed
rather favourably by model-based phylogeneticists
(e.g. Ronquist et al., 1999; Nylander et al., 2004), but
more recently has been questioned (Congreve and
Lamsdell, 2016; O’Reilly et al., 2016; Puttick et al.,
2017). The model proposed here shows that the basic
premises of IWP can be justified from a likelihood per-
spective, and helps illuminate several aspects of
implied weighting: the choice of weighting strength,
differences in weighting strengths that may be required
by different numbers of taxa (discussed by Goloboff
et al., 2008a), and a natural justification to collectively
weight partitions (as in “extended” implied weighting;
Goloboff, 2013).

In the second part of the paper, we discuss the
minor differences to be expected between the results of
these approximate methods and EWP and IWP. In
particular, we discuss the apparent inability of Pois-
son-based models to directly take into account unex-
plained similarity (which IWP does; see De Laet,
2005), and the sensitivity to the size of the state space
assumed for all methods applicable to morphology.
We demonstrate that these differences are minor and,
within certain circumstances, the results of EWP and
IWP are expected to closely resemble those of their
Poisson counterparts. This second part of the paper is
more technical, and readers less interested in details
can skip it to go directly to the third section.

In the third part, we apply these implementations to
a sample of empirical datasets, and show that (con-
trary to the results of Holder et al., 2010 with NCM)
the model that approximates IWP is often selected for
morphological datasets, and a model that collectively

'Ironically, the method used by Goloboff et al. (2017) for gener-
ating their data (i.e. independently allocating character changes
equiprobably on any branch) is identical to that used by Puttick
et al. (2018), the same set of authors as O’Reilly et al. (2018). Either
Puttick et al. (2018) failed to realize the similarity, or they believe
that generating data in such a way implies a large number of param-
eters only when the authors do not profess a preference for model-
based methods.
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weights characters by partition is sometimes selected
for molecular datasets.

Models approaching equal weights and implied weights
parsimony

Generalities

The different ML models proposed in this paper
can approach the results of EWP and IWP with vary-
ing degrees of precision. The models that are based
on using the likelihood from the most likely individ-
ual reconstruction approximate the results of their
parsimony counterparts more closely; these single-
reconstruction methods are denoted by prepending
the letter s (i.e. sM P and simplik). The variants not
so prefixed (i.e. MPy; and implik), based on summing
the likelihood for all reconstructions for each charac-
ter (as in standard ML methods), produce results that
are very close, but not identical, to those of their
parsimony counterparts. But their likelihood values
are more precise, and therefore it is these variants
that are used for the model selection tests. The cru-
cial difference between standard models, and the
models proposed here to approach EWP and IWP, is
that the latter use the same length for all the
branches of the tree.

Basic assumptions

Only the basic aspects are covered here; for a more
in-depth coverage of methods used in ML, see Swof-
ford et al. (1996) and Felsenstein (2004). The models
used here are, just as in standard likelihood models,
homogeneous Poisson models; they are also Markov
processes (as lineages become independent after split-
ting). The idea is to emulate EWP and IWP for binary
and non-additive characters, and then the probabilities
of transformation between all states must be the same
(parsimony allows for differential costs of transforma-
tions, but that case is not considered here). This is the
same approach as in the Mk model (Lewis, 2001; Mkv
is just a variant of Mk that takes into account ascer-
tainment bias), as well as in JC69 (Jukes and Cantor,
1969) or the more general Neyman model (Neyman,
1971). That is, the probability of starting at state j and
ending in state k in a character with s states along a
given branch of length b is:

I s—1
Py =—+ 5 e’ (ifj =k, stasis)

i | s [Formulal]
Py = P et (ifj # k, change)

The length of a branch is the expected number of
substitutions per character along the branch (the

product of instantaneous rate and time; Swofford
et al., 1996; Lewis, 2001), taking into account that
multiple substitutions may nonetheless produce the
same final state. Note that these probabilities depend
on the number of states; as s is larger, it is less likely
that multiple substitutions (along the same branch, or
different branches) produce the same final state.

Standard models: heterogeneous branch lengths and
average likelihood

The models with heterogencous branch lengths are
derived from Felsenstein (1981a): they consider that
the length b is common to all the characters in the
dataset (or partition) and differs among branches of
the tree, and they obtain the likelihood by summing
over all reconstructions for each character (i.e. all pos-
sible paths to the data; this is often referred to as inte-
grated likelihood, as in Huelsenbeck et al., 2008). We
refer to this combination, in the remainder of the
paper, as standard models. The branch lengths of the
tree are chosen so that the likelihood is maximized.
Given that the likelihood for the dataset is the product
of the likelihoods of the individual characters, which
may become rather small when many characters are
present, the logarithms are normally used for each

character, so that:
InL= Z In/;

where L is the likelihood of the entire tree, and /; is
the likelihood of character i. As likelihoods vary
between 0 and 1, log-likelihoods are negative numbers,
so the negative likelihood is used as a number to be
minimized (just as the parsimony score).

These standard models allow for some characters to
evolve at a faster (or slower) rate, but all characters are
sped up (or slowed down) at the same branches by the
same exponential factor (the branch length). The most
common way to take into account rate heterogeneity is
the discretized gamma distribution (Yang, 1994), which
allows a variety of shapes with a single parameter. The
probabilities of transformation between two states j,k
for a character with rate r are then:

1 -1 . .
Py = . 43 e (ifj = k, stasis)
11, .
Pj = S5 (ifj # k, change)

The likelihood for each of the rate categories is
obtained by multiplying the probability of the
observed pattern by the probability that a character
belongs to the given category. The gamma parameter
is set to the value that maximizes the likelihood sum-
ming over all rate categories (clearly, when all charac-
ters evolve with exactly the same rate, the best
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likelihood will be obtained with a gamma that concen-
trates all the distribution at a single value).

A likelihood justification for a different form of
character weighting (i.e. cliques and threshold meth-
ods) has been proposed by Felsenstein (1981b). The
assumptions of Felsenstein (1981b) have been strongly
criticized by Farris (1983: 32-34) and are substantially
different from those presented here. The main differ-
ence with the present approach is that Felsenstein
(1981b) did not invoke uniformity of branch lengths,
and expected some fraction of the characters to exhibit
very high homoplasy (then effectively giving some
characters zero weight).

Models for equal weights parsimony: sMP ;. and M P ;.

SMPj,. One model for EWP results from
Goldman’s (1990) work. Goldman (1990) showed that,
for probabilities of change (p) and stasis (¢) between
two states fixed for all the branches of a given tree,
the single reconstruction that maximizes the overall
probability of the observed state distribution for each
character is (as long as ¢ > p) the one that minimizes
the number of steps; therefore, the most parsimonious
tree maximizes this probability over all characters. For
a given reconstruction, with n branches where the
character is transformed, and u branches where it is
not, the individual likelihood of character i is then
l; = ¢" p", and [; is maximum when 7 (the number of
transformations) is minimum. Goldman (1990) was
interested mostly in establishing conditions of
equivalence between parsimony and likelihood, so he
did not discuss the values of ¢, p that (for a given
value of n) maximize /. For characters with s states,
these probabilities are simply

g =u/(n+u)
p=(1-g)/(s—1)

(note that the formula for p reduces to p =1 — ¢
when there are only two states). The branch length
that produces these values can be obtained by solving
the equation of probability of stasis (in Formula 1),

b7 w(e-)

This method estimates a single parameter for all
characters and all branches; the method is highly con-
strained, not allowing for longer or shorter branches,
or faster and slower characters [i.e. in agreement with
Yang’s (1996) characterization of EWP as a very sim-
plistic model]. We thus refer to this method (identical
to Goldman’s, except that the branch length parameter
is optimized) as sM Py (for single-reconstruction M P
under likelihood) and, as long as the state space (see
next section, under “State space and homoplasy”) is

[Formula 2]

[Formula 3]

the same for all characters, it is exactly equivalent to
EWP, producing the same ordering for any set of
trees.

MP;.. The likelihood for individual characters, in
standard Poisson models for phylogenetics, is not
calculated from the single reconstruction with highest
likelihood, but instead from the sum of likelihoods of
all possible reconstructions. We refer to this as the
MP,;. method (for MP under likelihood): calculate the
likelihood wunder a single length common to all
branches (and characters) in the tree, chosen so as to
maximize the likelihood, summing the likelihood for
all possible reconstructions. Note that (even if both
approaches use the likelihood that results from
summing all reconstructions), M Py differs from the
standard likelihood model in all the branches of the
tree having the same length. For large numbers of
characters with a common state space, when the
length of all branches is constrained to be the same,
the tree of highest likelihood will converge to the EWP
tree and (if the data have been generated by a model
tree with identical branch lengths, below a certain
threshold value) this will be identical to the model
tree. Steel (1989) and Kim (1996) showed that even
with large numbers of characters and constant branch
lengths, the EWP tree may be different from the M P,
tree. In simulation experiments, we have confirmed
that (for large numbers of characters) model trees with
constant branch lengths are consistently recovered by
both EWP and MP; for very long branches (even a
length of 2, ie. an average of two changes per
character per branch, consistently produces the model
tree from sufficiently large numbers of characters).
Note that this does not mean that EWP and MPj;
produce the same results for any possible input; they
converge when the number of characters is large, but
may produce different trees for some specific data
inputs (see examples in next section, under “More
steps, higher likelihood?”). The correspondence
between EWP and MP,; is therefore close, but only
approximate.

In standard models, where different branches of a
tree can have different lengths, branch lengths are cho-
sen so that the sum of likelihoods for all reconstruc-
tions is maximized (via Formula 1). This is a heuristic
process that needs to be performed iteratively on all
the branches of the tree, which can be made efficiently
thanks to the “pruning” and “pulley” algorithms of
Felsenstein (1981a). In the case of M Py, where branch
lengths are the same for all the branches of the tree,
the pulley algorithm is unnecessary (i.e. the maximiza-
tion does not involve “pulling” down the tree to differ-
ent rootings to optimize branch lengths one at a time,
hence requiring simpler computations). Thus, in M Py,
the pruning algorithm is simply used repeatedly to
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calculate total likelihoods for different branch lengths.
The branch lengths calculated with Formula 3 provide
an initial approximation, and the best value is found
heuristically (with any desired degree of approxima-
tion, as the function is continuous and has a single
optimum); in the implementation used here, we have
used 107 for the difference in probability of stasis as
the limit.

Models for Implied Weights: simplik and implik

The preceding section considered the use of a single
branch length common to all characters. Using the
same length for all branches of the tree amounts to a
model where transformations for each individual char-
acter can be equiprobably located on any branch of
the tree. Parsimony has traditionally been justified on
the basis of making few assumptions (e.g. Farris,
1983), and that idea is compatible with considering, a
priori, that character changes could equally well occur
on any given branch. As discussed by Goloboff et al.
(2018b), the notion that transformations within a given
character can be equiprobably located on any branch
is a statement on the product of evolution, not a state-
ment on a specific process; and this product may result
from different processes. A specific process is needed
to assign actual likelihoods to the result, and this is
here achieved by assuming a Poisson process and con-
straining lengths of all branches to be equal. The same
equiprobable distribution, however, could be achieved
by generating data from a model tree where the
lengths vary independently for each branch and char-
acter (as in NCM; Tuffley and Steel, 1997), or by just
randomly distributing changes over branches (as done
by Goloboff et al., 2017, the same “model” used by
Puttick et al., 2018).

One of the widely used variants of parsimony is
implied weighting (Goloboff, 1993), where trees are
compared according to the implied reliability of the
characters (with reliability considered as a decreasing
function of homoplasy); this leads to a scoring func-
tion that increases by smaller differences for each of
the successive steps of a character. Although parsi-
mony seems to require that transformations for a
given character are placed equiprobably on any branch
of the tree, the requirement that transformations are
equally likely to occur in any of the characters can be
eliminated, and (from the likelihood perspective) this
automatically produces a method that behaves almost
exactly as IWP.

Simplik.  Consider first the case of likelihood
evaluated using the optimal reconstruction, as in
Goldman’s (1990) approach. If some characters are
more likely to change than others, then the branch
length should be separately adjusted for each

character, and the obvious criterion to select branch
lengths is maximizing the likelihood for each
individual character. For invariant characters, the
optimal branch length is 0, so that P = 1; the
individual likelihood for an invariant character is thus
a constant for the different trees, therefore having no
effect on tree choice. As variable characters with
different numbers of steps are considered, the branches
have to be adjusted (following Formulae 2-3)
independently for each character. The increase in log-
likelihood for an additional step becomes smaller and
smaller as the character has more steps, as branches
become longer (to accommodate for additional steps).
When (estimated) branch lengths are short, then a
transformation is  improbable, and  another
transformation strongly decreases the likelihood (the
product of the probabilities along all branches), and
vice versa. Thus, the first steps of homoplasy are more
costly than subsequent ones. This is exactly how IWP
operates, and so adjusting branch lengths individually
for each character (while constraining all tree branches
to have the same length, and using the single
reconstruction of highest likelihood) is an ML
equivalent of IWP. We refer to this method as simplik
(for single reconstruction implied weighting under
likelihood).

By default, TNT (Goloboff et al., 2008b; Goloboff
and Catalano, 2016), the main program for IWP, uses
the complement of the formula originally proposed by
Goloboff (1993), choosing the tree that minimizes ) h;/
(k + h;) (where h; is the homoplasy of character 7, and k
is a constant of concavity, with larger values weighting
less strongly against characters with homoplasy; see
Goloboff, 1995). Figure 1 compares the weights derived
from simplik, for different numbers of taxa, and those
resulting from the original formula for IWP with differ-
ent values of k. Goloboff et al. (2008a) had proposed a
possible way to set the weighting strength for different
numbers of taxa (a possibility first raised by Goloboff,
1993); simplik provides another way to naturally rescale
the weighting function, based on the Poisson substitu-
tion process assumed by likelihood models. As can be
seen from Fig. 1, the simplik weighting function down-
weights extra steps much faster for fewer taxa. The
default formula for IWP produces weights that are very
similar to those of simplik, when mild concavity values
are used. As a quick approximation, in Fig. 1 we have
used a value of k equal to half the number of taxa; this
is a much milder weighting function than normally
used. The similarity between the two methods is quite
close, even if using the default formula for weighting.
Figure 2a shows (for a dataset with 60 taxa and 500
characters generated under the Mk model, with very
unequal branch lengths, as in Goloboff et al., 2018b)
the correlation between the default weighting function
of TNT (with k = 30), and the simplik score, in 15 000
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Fig. 1. Comparison of relative weights determined by (a) simplik, with (b) the relative weights determined with the default formula of TNT (with
a value of k equal to half the number of taxa), for 20, 40, 60 and 80 taxa (darker shading indicates more taxa). The x-axis displays number of
steps or transformations (in a two-state character), while the y-axis displays the relative weights (normalized so that the first step of homoplasy

costs unity).
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Fig. 2. Plots of different approximations to implied weights. The scores were calculated on 15 000 trees (optimal and near optimal under implied
weights), for a simulated dataset with 60 taxa and 500 characters (with two states, generated under the Mk model, with branch length deter-
mined as x?/3000, where x is a random number taken from the interval 1-20). This leads to model trees with significant differences in branch
lengths and makes for a lower correspondence between the values of implied weighting and the implik approximation. Values on the y-axis are
log likelihoods. (a) Values of simplik scores (y-axis) plotted against implied-weighting scores with the default weighting function with k& = 30 (x-
axis). The correlation (R) is 0.9995. (b) Values of simplik scores (y-axis) plotted against implied weighting scores with relative weights as in simp-
lik (i.e. as in Fig. la); the correspondence is exact. (¢) Values of implik scores (y-axis) plotted against implied weighting scores with relative
weights determined from simiplik (i.e. as in Fig. la); the correlation (R) is 0.9825.

trees (optimal and near optimal under IWP). Given the
similarity in the curve shapes observable in Fig. 1, both
IWP (with k& = 30) and the simplik method order the
trees in almost exactly the same sequence. Given that
TNT allows the user to define any weighting function
for IWP, the values from simplik can then be used in
TNT as relative weights, producing an exact correspon-
dence between simplik and TWP when all characters
have the same number of states (Fig. 2b) and no miss-
ing entries are present (see below). The correspondence
is only approximate when missing entries are present or
different characters have different numbers of states
(this is so even if the state space assumed is the same for
all characters, as the treatment of homoplasy is different

in both methods; see next section for examples and dis-
cussion).

Implik. The method described in the preceding
subsection uses the likelihood of the optimal
reconstruction to evaluate the trees. The standard
approach in model-based phylogenetics uses the sum of
likelihoods of all reconstructions instead of the
maximum. We refer to the approach of optimizing
branch length independently for each character, using
the likelihood from all reconstructions, as implik (for
implied weighting under likelihood). For possible
character patterns, the correct probabilities under the
assumed model (i.e. the probability of actually
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Fig. 3. Plots of different approximation to equal weights parsimony and implied-weights parsimony. Values on the y-axis are log likelihoods.
For (a) and (b), the scores were calculated on 500 trees (optimal and near optimal under implied weights), for a simulated dataset with 10 taxa
and 15 000 characters (with two states, generated using an exponential function with A = 0.15, which leads to a better correspondence between
the values of parsimony and their likelihood approximations). For (c), the scores were calculated on the same dataset and trees as in Fig. 2. (a)
Values of M Py scores (y-axis) plotted against parsimony length (x-axis); correlation (R) is 0.9912. (b) Values of implik scores (y-axis) plotted
against implied-weighting scores with relative weights as in simplik (i.e. as in Fig. la); correlation (R) is 0.9932. (c) Values of M P scores calcu-
lated collectively for four groups of characters (y-axis) plotted against extended implied weighting scores (x-axis) for the same character groups.

generating each pattern under the model) are produced
only by this sum (Goloboff, 2003: 100), which considers
all possible paths to the data. The correspondence
between IWP and the method based on summing up
the likelihood of all paths to the data is not exact, but it
is quite close (Fig. 2¢), and both methods are based on
the idea that (on average) it costs less to add
homoplasy to characters with more steps. Evaluating
different models requires us to compare the likelihoods
they produce, as well as the number of estimated
parameters. Thus, comparisons for model selection are
better carried out using similar (and more accurate,
under the Poisson model assumed) methods to calculate
the likelihoods. Just as in the case of EWP, the results
of wusing the likelihood from a single optimal
reconstruction, or the sum from all possible
reconstructions, converge to ranking the trees in the
same sequence when all the branch lengths of the
model tree are uniform and there are large numbers of
characters (e.g. as in Fig. 3a), the results of using a
single or all possible reconstructions converge as well in
the case of branch lengths optimized independently for
each character (Fig. 3b) when the model tree has
uniform branch lengths and there are many characters.
For implik, the ordering of the 15 000 trees is not
exactly the same as IWP, but the results are strongly
correlated (Fig. 3b). Therefore, implied weighting
provides a close approximation to the results of implik.
The approximate correspondence between the results
for implik or simplik on the one hand, and IWP on the
other, is interesting from several points of view. Not
only does this correspondence provide a natural likeli-
hood justification for IWP (for those inclined to think
that only model-based justifications are legitimate), but

also provides additional rationale for aspects of IWP
that have so far been justified only from the perspective
of parsimony. The guidance for the choice of k values
has been discussed above. This correspondence also
provides justification for the idea of applying IWP to
blocks of data, a method proposed by Goloboff (2013)
as extended implied weighting, which is potentially use-
ful for molecular sequences (where the original formu-
lation of IWP may not be the best method; for
discussion see Goloboff et al., 2008a; Goloboff, 2013).
While block weighting requires special calculations
under IWP, achieving this in the present context only
requires that the likelihoods are calculated by finding a
single optimal branch length for each block, as in
SMPy;. or MPj., then multiplying the likelihoods for
each block (or summing the log-likelihoods), to obtain
the total likelihood (or log-likelihood). Transforma-
tions in the block of data with longer optimized branch
lengths will be less costly (i.e. more probable), simply
as a by-product of the application of sMPy; or MPy.
Figure 3¢ shows the result of applying both extended
IWP and sM Py, for the same four blocks of data, to a
set of trees for the dataset of Fig. 2, showing again a
close correspondence.

Additional properties of likelihood approximations of
EWP and IWP
Number of parameters

The number of parameters that need to be estimated

under the single-reconstruction approach used in parsi-
mony and the sMP; and simplik variants is
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controversial. Felsenstein (1978) first showed that par-
simony may be inconsistent when all characters evolve
with common rates and the length of tree branches dif-
fers substantially. He attributed (Felsenstein, 1978:
408-409) the inconsistency of parsimony to the fact
that it estimates the cost from the best possible indi-
vidual reconstruction, arguing that (for a tree of T
taxa) this amounts to assigning a specific ancestral
state to each of the 7-2 internal nodes of the tree for
each of the C characters, in his view requiring estima-
tion of a number of parameters that keeps increasing
as taxa or characters are added to the dataset.

The viewpoint of Felsenstein (1978) was contested
by Farris (1986: 22-23), and Felsenstein (1987: 208)
agreed that “it is not obvious” whether estimating C
(T-2) parameters is required for approaches that esti-
mate likelihood from the best individual reconstruc-
tion. Goldman (1990: 350) likewise recognized that
ancestral states “are not parameters of the evolution-
ary process, but random variables: particular realiza-
tions of parts of the process”, but they could
nonetheless be treated “as though they were” parame-
ters of the model. However, the hesitation in consider-
ing the use of optimal ancestral reconstructions as
requiring estimation of an inordinate number of
parameters magically evaporates when the argument
can be used to criticize parsimony, and the argument
is presented with absolute certitude (e.g. Lewis, 2001:
914; Holder et al., 2010: 479-480; Huelsenbeck et al.,
2011: 225).

Goloboff (2003: 99-101) argued that using the best
possible likelihood of all reconstructions does not
amount to a specific reconstruction of ancestral states.
The inconsistency when using the score from the best
reconstruction (be it likelihood, or parsimony) results
from the fact that the best reconstruction alone does
not provide the correct probabilities of the observed
distribution of states among the terminals for the
model in question; only the sum of all likelihoods
(possible paths) provides this. If a reconstruction was
a parameter, then there would be a reconstruction that
would produce the correct value for the probability of
generating the observed state distribution under the
model, and only the sum for all reconstructions pro-
vides that value. The likelihood of all possible recon-
structions is also (implicitly) considered both in the
case of parsimony and in standard likelihood. These
values are all summed up in standard likelihood, and
just one value is selected in the case of parsimony.
Selecting the value of likelihood of the best possible
reconstruction is not the same thing as selecting the
best reconstruction as such (much like an apparent
synapomorphy in two sister taxa being in fact due to
independent parallel acquisition does not make the
tree false; see Farris, 1983: 13-14). Interestingly, using
the likelihood of the best possible reconstruction

causes inconsistency only when the data are generated
under certain models (and, as noted by Goloboff,
2003, when the specification of a reconstruction has to
select from among fewer alternatives, given that
increasing the number of possible states makes parsi-
mony consistent). Otherwise, the identification of
ancestral conditions does not cause any estimation
problems. If the inconsistency was indeed caused by
reconstructing specific ancestral states for each charac-
ter and node, then evaluating trees with the likelihood
of the best reconstruction should produce inconsis-
tency always, not only under some specific models.

In standard likelihood calculations, the likelihood of
each individual reconstruction is multiplied by the
prior probability (1/s, in the case of the symmetrical
models used for morphology) that one of the s states
at the root actually occurs there (this calculation is
easily incorporated into the pruning algorithm, see
Swofford et al., 1996). Considering the effect of such
multiplication by the prior in the case of single-recon-
struction algorithms also supports the idea that the
number of free parameters is really not increasing
when the likelihood is estimated from the best possible
reconstruction. With such multiplication, the values of
likelihood obtained from the best reconstruction (simp-
lik) will always be smaller than those obtained when
summing up reconstructions (implik). The two values
will converge only when branch lengths are very short,
because in that case most of the likelihood contribu-
tion will come exclusively from the MP reconstructions
(Felsenstein, 1981b). If the number of parameters was
really larger in the single-reconstruction case, one
would expect (this method being based on the same
model of character change as the multiple reconstruc-
tion one) that the likelihood be increased as more
parameters can be tuned to increase fit—yet the oppo-
site happens.

Then, we consider that the number of parameters in
the single-reconstruction approaches does not increase
with the number of nodes in the tree. The problem
with using the single reconstruction approaches for
testing the fit of different models is not the number of
parameters, but instead that the resulting values of
likelihood are only approximate. The values obtained
from the single-reconstruction approach are near the
(correct) values only when the likelihood of the opti-
mal reconstruction is not divided by the prior, and
even then, only approximately (Goloboff, 2003). Thus,
to obtain accurate comparisons using model-selection
methods on empirical datasets, it seems better to use
the likelihoods obtained from MP; and implik (in-
stead of sM P, and simplik), and the number of esti-
mated parameters is in this case uncontroversial. A
general comparison of the approaches examined here,
and the numbers of parameters to adjust for each, is
shown in Table 1. The number of parameters
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Table 1

Comparison between basic aspects of the different approaches explored in this paper. In the “Parameter no.” column, 7 = the number of taxa, and C = the number of characters. For

SM P and simplik, the number of parameters estimated is controversial; for each of those, the number proposed in this paper is shown first, followed by the alternative (less preferred)

number of parameters in italics

Parameter no. Reference

Reconstructions

Emulates

Branch lengths

Method

Lewis (2001)

2T -3

Average

JC69

Different for each branch, same

Mk

for all characters
Different for each branch, same for

Lewis (2001)

2T -2

Average

JC69 + T

Mk + T

all characters
Same for all branches and characters

Goldman (1990)

Optimal

Equal weights parsimony

SMP[,'k
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(T - 2)?

Yang (1996)

Average

Equal weights parsimony

Same for all branches and characters

MPj.

This paper

Optimal

Implied weights

Different for each character, same for

Simplik

(T - 2)?

all branches
Different for each character, same for all branches

This paper

Average

Implied weights

Implik

This paper

Number of

Average

Extended implied weights

Same for all branches and characters

Partition M Py,

partitions

within each partition

estimated by the standard Mk or JC69 models for a
tree of 7 taxa is then 27-3 (i.e. the number of
branches in the tree); in the case of gamma-distributed
rate heterogeneity, one additional parameter is
included (the value of o). In the case of implik, the
number of parameters equals the number of charac-
ters, C. In the case of MPy, a single parameter (the
unique branch length) needs to be estimated; this
highly constrained model will naturally tend to pro-
duce low likelihoods, but the low number of parame-
ters might make it a viable candidate in some cases.

The numbers of parameters to estimate under each
approach indicate that implik, the likelihood ana-
logue of TWP, may (other things being equal) tend
to be selected over the Mk model when the dataset
has few characters relative to the number of taxa
(i.e. when C <27-3). Indeed, the application of
IWP to matrices with few taxa (e.g. fewer than 15—
20 taxa) rarely produces results different from EWP
(as noted by Goloboff, 1997: 237-238), thus indicat-
ing that the application of IWP is in that case
superfluous (as expected from considering the scant
opportunity for accurately assessing homoplasy that
such small trees provide). This is why the analyses
of Goloboff et al. (2008a, 2017) only examined data-
sets where 7 > 50. General consideration of the
number of parameters estimated by the different
approaches indicates the same general picture. In the
typical molecular dataset, with large numbers of
characters relative to numbers of taxa, the opposite
is true: the analogue of IWP, implik, is less likely to
be selected as an appropriate model. When C > 27—
3, implik will be selected as an appropriate model
only if the likelihood is increased by a very large
factor over that of standard models with a common
mechanism for all characters.

State space

The number of possible states a character can take,
or state space, needs to be carefully considered in the
case of likelilhood methods for morphology. If the
state space is different for the different characters in
the matrix, an additional element of discordance
between the likelihood approximations used here and
their parsimony counterparts is introduced: the proba-
bility of transformation between states then changes
with the number of states, implying different prior
weights for the characters with different numbers of
states. The size of the state space is naturally fixed in
the case of molecular sequences, but it is problematic
in the case of morphology. For the Mk model, both
PAUP* (Swofford, 2002) and MrBayes (Ronquist
et al., 2012) use the same state space for all characters,
based on the largest observed state in the matrix. This
is probably the best course of action, because it avoids
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different prior weights solely on the basis of observed
numbers of states, but there seems to be no reason for
this, other than making the relative contributions of
each character equal a priori.

For morphology, it seems hard to justify any specific
choice of a state space on the grounds of an empirical
reality, instead of purely methodological considera-
tions. Why should the state space of a character
known to vary among only two possible conditions be
considered as comprising many more options? During
the actual evaluation of possible reconstructions for a
character “spine”, with states “0, present” and 1,
absent”, assuming a larger state space (s) would imply
that conditions 2, 3, ..., s—1 are considered as well as
possible ancestral assignments—even when those
assignments would be undefined or impossible. This
reflects, in our view, a dilemma (so far unsolved) in
the choice of state space for morphology in model-
based phylogenetics. Using a state space that varies
among characters may be more meaningful in biologi-
cal terms, but this would make some characters more
influential than others, on the basis of properties (such
as the mere number of observed or possible condi-
tions) that are not obviously related to the reliability
of the characters.

Methodological considerations therefore indicate
that the best choice probably is (as done by PAUP*
and MrBayes) a uniform state space for all charac-
ters. However, a problem remains: why should the
state space be determined by the largest observed
state in the matrix? Why not use a much larger state
space? After all, it is possible that either (i) characters
not yet included in the matrix have a much larger
number of conditions, or that (ii) taxa not yet
included in the matrix have additional states not pre-
sent in the matrix with the current taxon selection. In
addition, the number of alternative forms many mor-
phological characters could take is potentially very
large (e.g. in characters related to shape rather than
presence/absence), even if many of those forms have
never been realized in the course of evolution. These
considerations suggest that in the case of morphology
perhaps a large, common state space is the most
appropriate choice.

As the size of the state space increases, it is well
known that the differences between EWP and standard
likelihood narrow (Felsenstein, 1978; Farris, 1983;
Steel and Penny, 2000, 2004; Goloboff et al., 2017).
Figure 4 shows this for EWP and the Mk model. For
two states assumed as possible conditions, the optimal
trees under EWP—white arrow—differ from the opti-
mal trees under Mk—grey arrow—but for five or more
states both Mk and EWP select the same trees as opti-
mal, with all the trees located closer to the diagonal
indicating identity between the two approaches as the
number of states increases. More relevant for the

present paper, a similar phenomenon also occurs when
a single length is used for all the branches of the tree,
so that EWP converges more closely to M P (Fig. 5),
and IWP converges more closely to implik (Fig. 6).
Increasing the state space s for likelihood calculations
has the disadvantage that the times needed for scoring
trees increase with s (as in Sankoff parsimony; Sank-
off and Rousseau, 1975), but in that case the quality
of the approximations EWP~MP,; and IWP=implik
increases as well, and the times needed for calculating
trees under EWP or IWP do not increase with the
numbers of states.’

Note that Wheeler (2016: 224) considered that the
NCM approach of Tuffley and Steel (1997) “can be
viewed as a likelihood-based character weighting
scheme in parsimony analyses”. He was referring to
prior weighting on the basis of different number of
states, not on the basis of homoplasy or different num-
bers of steps. Under NCM, the likelihood of a tree
directly depends on the sum of the number of steps
(n;) for each character i of the total C (Tuffley and
Steel, 1997):

L — ﬁ (I/S)n,+1

i=1

The exponent adds 1 to n; to take into account the
prior probability of the root state. Applying loga-
rithms to both sides of the equation,

InL =1In(1/s) <C+ in,)
i=1

the resulting equation makes it evident that the
tree score depends exclusively on the sum of equally
weighted steps (27,). In other words, the difference
in log-likelihoods for a given step difference d
between two characters is the same, regardless of
whether it is a difference between 1 and 1 + d, or
between 20 and 20 + d steps. Thus, when the size of
the state space is constant over all characters, NCM
does not mimic IWP, but instead EWP (as intended
by Tuffley and Steel, 1997). This identity between
NCM and EWP breaks down when the state space
varies among characters.

Steps and homoplasy

Using a common state space for all characters makes
their relative prior weights more even. However, even if

’Assumed numbers of states, that is. The number of actually
observed states has some effect on the times needed for parsimony
calculation (e.g. multicharacter algorithms for optimization can pack
fewer characters together for more observed states), although still
much less than the s* needed in the case of likelihood.
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Fig. 4. Effect of increasing the size of the character-state space, for the same dataset and trees as in Fig. 1, on the correlation between the scores
under the Mk model (y-axis, log likelihoods) and the scores under equal weights parsimony (x-axis). The arrows in the leftmost diagram indicate
trees that are optimal under the Mk model (grey) or under parsimony (white); the same trees become optimal under both criteria as the size of
the character-state space increases.
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Fig. 5. Effect of increasing the size of the character-state space, for the same dataset and trees as in Fig. 1, on the correlation between the scores
of the M Py, approximation (y-axis) and the parsimony score under equal weights (x-axis). Values on the y-axis are log likelihoods.
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Fig. 6. Effect of increasing the size of the character-state space, for the same dataset and trees as in Fig. 1, on the correlation between the scores
of the implik approximation (y-axis) and the score under implied weights (x-axis, user-defined relative weights as in simplik for the corresponding
state space). Values on the y-axis are log likelihoods.

the size of the state space is fixed at a relatively large not their number of steps, so as to avoid penalizing
number, some differences remain between IWP and its multistate characters for no reason other than display-
likelihood analogues simplik and implik. This is because ing more variability (see Goloboff, 1993). An example
the differences in log-likelihoods, in the case of simplik of this difference is shown in Fig. 7, a dataset where
and implik, decrease with the number of steps, regard- most of the tree structure is determined by the black
less of whether those steps are homoplastic or not. characters (3-6), but with the first two characters in the
Implied weighting, instead, was designed to down- matrix in conflict with each other, determining two
weight characters only as their homoplasy increases, alternative positions for taxon e. The first character is
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Fig. 7. A case where differences in the number of states in two char-
acters results in a difference in prior weights under the likelihood
approximation to implied weights. The first and second characters in
the matrix are in conflict and have different numbers of states. Even
with an assumed common state space of 3 (the largest number of
states in any character), the tree that saves steps in the character
with fewer states (tree A) is preferred under simplik, because the
approach does not distinguish between steps (required for observed
states) and homoplastic steps (required for origination of similar fea-
tures). Both trees, A and B, are considered identical under implied
weights, because each requires one step of homoplasy in one of the
characters. [Colour figure can be viewed at wileyonlinelibrary.com]

binary, and can have 1 step on tree A (where ¢ is the
sister group of fgh) or 2 steps on tree B (where e is sis-
ter to d). The second character has 3 states, with 3 steps
on tree A, or 2 steps on tree B. Because the difference
in log-likelihood between 1 and 2 steps (for the first,
binary character) is larger than the difference between
2 and 3 (for the second, multistate character), the tree
that saves steps in the binary character is preferred by
simplik, at the expense of postulating more steps for
the multistate character. However, each of the two
characters can have either 0 or 1 steps of homoplasy
on the alternative trees, so the two trees are viewed as
exactly the same under implied weighting. At least
from the perspective of morphological analysis, the fact
that the second character has taxa gh with a third state
does not seem to count against its reliability; what
should count against the reliability of a character is un-
explained similarity, and all the similarities in the states
for the second character can be accounted for by com-
mon ancestry in tree B. The logic of the Mk model,
based on counting only transformations, does not seem
to have a direct way to distinguish between steps and
homoplastic steps (i.e. independent transformations into
the same condition). Under the Poisson process
assumed by the Mk model, homoplasy is simply a
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byproduct of the number of transformations, and so
trees are evaluated under that model only on the basis
of their numbers of steps, not on the basis of homo-
plasy. Given that difference, we consider the treatment
under IWP to be preferable. From that perspective,
each of the trees, A and B, has a single instance of a
similarity not attributable to common ancestry (i.e. the
similarity in state 1 of d and e in the second character
for tree A, or the similarity in state 1 of ¢ and fgh in
the first character for tree B), and so both trees are
considered equivalent under IWP.

More steps, higher likelihood?

Although the methods based on both optimal and
integrated reconstructions will converge to the same
results when large amounts of data are generated from
a model tree with all branches of the same length, they
need not produce the same result for every input. The
methods based on summing up reconstructions may
produce results different from EWP or IWP in some
cases. Given that the likelihood from all reconstruc-
tions is considered, this may produce differences in the
likelihood for trees that (from the perspective of parsi-
mony) would seem to be identical. This can happen
even in the case of trees with a single transformation.
An example is presented in Fig. 8, which shows that
depending on the location of a unique transformation
(for a tree with 10 taxa, with a state space of 2, in
black), the log-likelihood for the character can vary by
0.06749 units (i.e. 4.42705-4.35956, with the change
located on the branches marked A or B in Fig. 8). As
the state space is increased to 20 (grey), the differences
in log-likelihood become much smaller, 0.03500 (i.e.
9.3988-9.3638). Of course, in the standard Mk model,
where different branches of the tree have different
lengths, the cost of a transformation will also depend
on where that transformation is located, but that is
the intention of the model. The evaluation constrain-
ing all branch lengths to be identical shown in Fig. 8
is meant to mimic parsimony, so the differences
depending on where the change is located are undesir-
able (and they certainly cannot be justified on the
same grounds as in the standard Mk model). The dif-
ferences, in this case, arise from the summing up of
reconstructions, not from differences in branch lengths
(as they do under the Mk model).

Summing up the likelihood of reconstructions can
thus produce different likelihoods for trees of the same
numbers of steps. This is why implik, despite converg-
ing to the results of implied weighting for large num-
bers of characters, can produce different results for
particular datasets. The differences in likelihood
between different locations for the same number of
steps can even be large enough to make the worst like-
lihood for a given number of steps lower than the best
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A 4.42705
\/
4.36440
442246
4.35991
442215
4.35958
4.42213
g [4-35956
9.73638
9.73986
9.73638
~——————— 9.73986
9.73638
[ ——— 9.73986
9.73639
/ T 973088

Fig. 8. Example showing that the score obtained for single-step
(two-state) characters under a likelihood approach that uses the
same length for all the branches of the tree may differ, depending on
where the change is located. The black numbers indicate the log like-
lihoods for a state space of 2; the positions A and B indicate the
branch with a change for the characters with the worst and best like-
lihoods, respectively. The grey numbers indicate the log likelihoods
for a state space of 20.

likelihood for a larger number of steps. In other
words, a character with more homoplasy may
nonetheless have a higher likelihood. An example is
shown in Fig. 9. Character A has 3 steps, and an imp-
lik log-likelihood of —8.3213; character B cannot be
reconstructed to have fewer than 4 steps, but it has an
implik log-likelihood of —7.9862.

The main cause of the difference is that (even if the
individual reconstruction of 3 steps in character A has
a higher probability than any of the individual recon-
structions of 4 or more steps in character B) there are
more alternative reconstructions of 4, 5 or 6 steps for
character B than for character A, which, summed
together, contribute more to the likelihood. Figure 10
shows the cumulative probabilities for the first 30
reconstructions (ordered from highest to lowest indi-
vidual likelihood). For character A (grey, with a mini-
mum of 3 steps), the first reconstruction has a higher
likelihood than the best reconstruction for character B
(black, with a minimum of 4 steps), but as subsequent
reconstructions are considered, the likelihood of char-
acter B matches and eventually exceeds that of charac-
ter A. In other words, even when the reconstruction

—In L 8.321302 —In L 7.986215
Bch len 0.864432 Bch len 0.815486
L 0.000243 L 0.000340

Fig. 9. (a) A character with a minimum of three changes has a
worse individual likelihood (under implik) than a character with (b)
a minimum of four changes. See text for additional discussion.
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Fig. 10. Cumulative likelihoods for the characters in Fig. 9, for the
best 30 reconstructions in each character. The best reconstruction of
character A has a better likelihood than the best reconstruction for
character B, but there are more reconstructions with a relatively high
likelihood in character B, so that its overall likelihood is better than
that of character A.

with fewest steps has fewer steps in character A than
in character B, character B has more reconstructions
with relatively few steps; there are more reconstruc-
tions with 9-12 steps in character A, and more recon-
structions with 4-8 steps in character B. This
distribution of numbers of steps among possible recon-
structions is shown in Fig. 11a. The main contribution
to the likelihood of character B then comes from the
(many) alternative reconstructions with 4-6 steps, as
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Frequency of reconstructions 0.20
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Number of steps
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Frequency of reconstructions 0.20

1 2 34 56 7 8 910 1112131415
Number of steps

(b)
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Likelihood contribution
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Likelihood contribution

1 2 3 4 567 8 910 1112131415
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Fig. 11. (a, b) Histograms showing the relative frequencies of reconstructions with different numbers of steps (a), and the relative likelihood con-
tributions of reconstructions with different numbers of steps (b) for the two characters in Fig. 9 (grey, for character A, and black, for character
B, both drawn on a common scale). (¢, d) The same as in (a) and (b), but for the characters indicated as A (grey) and B (black) in Fig. 8. See

text for additional discussion.

shown in Fig. 11b; the likelihood of each individual
reconstruction with 9-12 steps in character A is too
low to substantially contribute to the overall likelihood
of this character. The net result of this distribution of
steps among possible reconstructions for each charac-
ter is then that character B has a higher likelihood,
even if the best possible reconstruction (the one with
fewest steps and highest probability) is better for char-
acter A. These inversions will not occur when branches
are very short (because in that case, as noted above,
the majority of the likelihood contribution will be
given by the most parsimonious reconstructions, as the
probability of stasis is much larger than the probabil-
ity of change). Therefore, these inversions can occur at
relatively low numbers of steps for few taxa, but only
at larger numbers of steps for larger numbers of taxa
(and then, they can occur only in characters with sig-
nificant amounts of homoplasy, thus making it less
likely that those characters have a substantial influence
on the final tree choice).

A similar consideration of the reconstructions with
different numbers of steps helps explain why the

single-step characters in Fig. 8 have different likeli-
hoods. Figure 11c shows the step distribution of the
two characters with lowest and highest likelihoods
shown in Fig. 8 (indicated as “A” and “B”, respec-
tively). In the character changing at branch B, there
are 2 reconstructions with 2 steps (instead of the single
one for the character changing at branch A). The main
difference in overall likelihood between these first two
characters is caused by this difference (Fig. 11d).

A branch-length conundrum?

Consideration of the branch lengths shown in Fig. 9
indicates a strange behaviour of the calculation of like-
lihoods by summing reconstructions when all branches
of the tree are constrained to have the same length. In
Fig. 9, character A can be reconstructed to have only
3 steps, while character B cannot be reconstructed to
have fewer than 4. One would expect from this that
the branch lengths optimal for character A are shorter
(i.e. with a lower probability of change) than those for
character B. Yet the opposite is observed, which is
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-In L 2.686255
Bch len 0.962428

—-In L 2.327893
Bch len 0.416064

—-In L 2.125999
Bch len 0.301956
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Freq. of reconst.
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Freq. of reconst.
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Lik contribution ¢ 60
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Fig. 12. Example showing how the insertion of taxa with missing entries between groups of taxa with different states can increase the likelihood
under the implik or M P approaches. The histograms show (for each case) the frequency of reconstructions with one or two steps (upper dia-
grams) and the relative likelihood contribution from reconstructions with different numbers of steps (lower diagrams).

counterintuitive. The reason for this difference is that,
for character B, the reconstructions that contribute the
bulk of the total likelihood are those with 4-7 steps
(as shown in Fig. 11b, black bars). For character A,
there are many more reconstructions with 9-12 steps
than for character B, and even if each of these does
not contribute much to the likelihood, they influence
the final result because of outnumbering the recon-
structions with fewer steps. Thus, the branch length
for character A is adjusted to best fit the many recon-
structions with 9—-12 steps, while that for character B
is adjusted to best fit reconstructions with 4-7 steps.

More taxa, higher likelihood?

With standard likelihood models, or with parsi-
mony, adding taxa can never increase the fit of the
data to a tree, even if the data have missing entries.
An unusual behaviour of the likelihood calculation
with fixed branch lengths and summation of all possi-
ble reconstructions is that adding taxa with missing
entries can increase the fit. An example is shown in
Fig. 12. The four-taxon tree to the left has a relatively
low likelihood; the middle branch (from x to y) is
quite long, but making it longer would decrease the
probability of stasis along the branches leading to the

terminals. When two taxa with missing entries are
added in the middle of the tree, the length of each tree
branch can be decreased, but there are now three
branches (instead of a single one) between the nodes
xy, so that even if the nominal branch length is less
than before, the xy path is longer, thus making the
probability of change along the xy path higher. There-
fore, the middle tree has a higher likelihood than the
left tree, made possible by the addition of the new
taxa. This effect is even more pronounced on the tree
to the right, with five branches along the xy path and
the best likelihood of the three trees. Note that this
effect of taxa with missing entries increasing the likeli-
hood occurs only when the missing entries are located
along branches that would (in a most parsimonious
reconstruction) have character-state changes; placing
the taxa with missing entries among several taxa with
an identical observed state does not have that effect.
The single reconstruction versions (sM Py and simplik)
can also have changes in likelihood when taxa with
missing entries are added to the tree, but the likelihood
always becomes worse. The decrease in likelihood
when adding taxa with missing entries is not identical
to the behaviour of parsimony, but is not as unusual
as the increase in likelihood with the addition of taxa
observable in M Py and implik.
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In the case of MP,. and implik, one of the compu-
tational consequences of the possibility that the likeli-
hood increases with the addition of taxa is that it
becomes impossible to calculate trees by implicit enu-
meration, as that approach is based on discarding
large proportions of the possible complete solutions
using the likelihoods of incomplete solutions. Should
one be interested in finding the optimal trees under
any of those two criteria, for datasets containing
missing entries, searches would have to be based
either on algorithms that exhaustively enumerate all
trees, or on heuristics.

In the standard Mk model, the same effect of taxon
addition can be achieved, but only for the likelihood
of individual characters, not for the entire dataset. For
example, if other characters without missing entries in
the added taxa frequently change along the xy path
in the rightmost tree (thus making the path between
those two nodes longer), then the likelihood for the
character with missing entries may be higher relative
to the leftmost tree; but in this case the overall likeli-
hood for all characters will decrease. Predicting the
influence of missing entries in likelihood approaches
which sum up all possible reconstructions is, in gen-
eral, quite difficult. In many cases, adding missing
entries to a dataset produces unexpected behaviour
for standard likelihood models. Goloboff and Wilkin-
son (2018: fig. 2) showed an example where JC69
applied to a set of perfectly compatible characters
could produce trees that require some homoplasy, as
a side result of differences in the branch lengths of
subtrees that are themselves compatible. This type of
effect has been observed only in cases of missing
entries. Lemmon et al. (2009), Simmons (2012, 2014),
and Simmons and Goloboff (2013) have showed
other cases where missing entries seem to produce
unusual or undesirable behaviour in standard likeli-
hood.

Implementation

As our interest in the various alternative approaches
to evaluate likelihood is only exploratory, a simple
implementation has been done using TNT scripts. The
scripting language of TNT allows us to calculate the
log-likelihood values for any given (binary) tree, with
expressions that are the namesakes of each of these
methods. This approach allows handling multiple trees
or, if desired, carrying out rudimentary searches (e.g.
by using TNT options that create SPR or TBR loops;
see Goloboff et al., 2008b: 784). Given that the imple-
mentation of the Mk model in PAUP* only handles
characters with a common state space, and the state
space in that program cannot be defined as an arbi-
trary number, the Mk approach (without estimating

the proportion of invariants, see Lewis, 2001: 917-918,
under a single rate) was also implemented in TNT
(with the scripting expression mklik). To explore the
effect of the size of the state space, in our implementa-
tion the size of the state space can be defined as any
arbitrary number (with 2 < s < 64, with the /set com-
mand), regardless of the number of states actually pre-
sent in the matrix (clearly, s must be greater than or
equal to the actual largest state in the matrix). In the
case of M P and sM P, the state space can be set by
the user, but it is always the same for all characters; in
the case of implik, simplik or the Mk model, it is
optionally possible to use the number of observed
states as the state space for each character. The results
of our Mk implementation were verified to be similar
to those in PAUP* (version 4.0a build 164, 1 Novem-
ber 2018, with the options condvar=no rates=equal,
to make results comparable).

Comparing models

Having described approaches that produce results
similar to those of EWP and IWP, the next step is
using model-selection methods to determine whether
some of those models are viable alternatives to the
standard Mk or JC69. The models tested here are fully
non-nested, and given that Holder et al. (2010) used
the AIC to compare models, the same comparison (ap-
propriate for non-nested models) is carried out here.
The AIC (Akaike, 1973) is defined as

AIC=2NP—-21In L

where NP is the number of parameters in the model.
Models with lower AIC values are preferred; the
strength S of preference for the model with minimum
AIC (AIC,;n), relative to model x with AIC,, is given
(e.g. Burnham and Anderson, 2002: 74) by

§ — (AIChin—AIC))/2

For the present comparisons, we considered the
model with the lowest AIC to be strongly supported
over the competitor model when S < 0.15 (i.e. the los-
ing model will minimize information loss with a proba-
bility of 0.15 or less relative to the winning model).
However, given the large values in AIC for most of
the cases examined (average over 10 000), the differ-
ences in AIC are usually much larger than required to
cross the threshold of 0.15 (1.897), so that using differ-
ent thresholds produces no appreciable change in over-
all results.

Table 2 summarizes all the AIC comparisons done;
the raw results (together with the datasets and scripts)
are included in the Supplementary Material.
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XIW better
than Mk

M P, better
than Mk

100

Implik better
than MP[[k

Implik better
than Mk

62

Number of

cases
100

Characters
50-150

Taxa
60

equal for all characters

Simulated; all branch lengths
Simulated; all tree branches

Results of applying AIC tests to different datasets. In the case of simulated datasets, a result matching the expectation for the corresponding data-generation model is in bold type. In
Type of dataset

the case of molecular datasets, the results for XIW outperforming Mk in parentheses correspond to division into three blocks (four cases for the 1st, 2nd and 3rd position) and division

into 25 groups of contiguous positions (five cases); no case is shared for these two options

Table 2
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Simulated datasets

To test whether the comparisons behave as expected,
we initially tested three different types of simulated
dataset (with 100 datasets of each type, all with 60
taxa). For these datasets, the number of characters
was a random number between 50 and 150, randomly
choosing between two and four as the maximum num-
ber of states in the matrix. Although the model tree (a
i S© different random tree for each dataset) is included in
all datasets, the tree used for testing the fit of the dif-
ferent models was simply found with a quick heuristic
search under EWP (with the xmul/t command with
default parameters, just as we do for the empirical
datasets). The first type of dataset used a model tree
where all branch lengths were identical (a random
number between 0.10 and 0.50), and all characters had
the same rates. The model expected to best fit the data
generated under such conditions is EWP, as both Mk
and IWP would fit a superfluous number of additional
parameters. As expected, the AIC chose MP,;/JEWP
over both implik/TWP and the Mk model, in all 100
o g e cases. The second type of dataset was generated with
the exponential function of Goloboff et al. (2017) and
character-state changes equiprobably allocated to any
tree branch (we used a A randomly chosen in the range
0.05-0.25). Given that different characters have differ-
ent amounts of homoplasy, and that within every
character changes are equiprobably located over all
tree branches, the expected best method is implik/TWP.
The AIC in this case chose implik/TWP over both
MP;;/JEWP and the Mk model in all 100 cases; note
that the Mk model used gamma (with four discrete
categories) to estimate rate heterogeneity, but this
clearly did not function as well as the analogue of
implied weights, implik, for these simulated datasets.
The third and last type of simulated dataset used
branch lengths » common for all characters, but differ-
ent for the different branches of the tree (determined
as b= x2/3000, where x is a random integer in the
range 1-20, so that branch lengths vary between
3.33 x 107 and 0.133, as in Goloboff et al., 2018b).
In this case, the Mk model was (as expected) preferred
over implik/IWP or M P;;/EWP in the vast majority of
cases (98 and 92 cases, respectively). These compar-
isons suggest indeed that the methods approximating
EWP and IWP perform as expected, and that the
parameterizations considered here for each method are
appropriate.

100 23
9 (4+5)

100

100
100
182

37

50-150
22-1844

50-150
305-2218

60
60
35-170
60-208

Morphological datasets

Having shown that the alternative likelihood
approaches behave as expected for simulated data, we
now apply the AIC test to empirical morphological
datasets. A set of 182 datasets was used, combining

the same length, varying for characters

Simulated; branch length
common to all characters,
varying over tree

Morphological

Molecular

85U017 SUOWIWIOD) BAITea1D) 3|edldde ay3 Aq peusenob afe saoiLe O ‘@SN JO S9N 10} A%eid 78Ul UO 48] UO (SUONIPUOD-PUR-SLUB)W0D A8 1M A Iq 1 BUI|UO//:SANY) SUOTHIPUOD pUe SWis | 3U18S *[£202/60/7T] Uo ARiqiaul|uo A8]iM ‘80Ul sUeI00D Aq 08EZT R IP/TTTT OT/I0p/L0o A3 | Areiq1juljuoy/sdny wouy pepeojumod ‘9 ‘6TOZ ‘TE00960T



712 Pablo A. Goloboff and J. Salvador Arias | Cladistics 35 (2019) 695-716
g g - g
Qe e ol « &, olx -
< S % o . < .:.;-. < &
S| rer sl e S| v a A S
[7) % 8 . b . ° ~le
Q wlea T, Qlofedi . Q.. .
.‘ .o:’ o. °e o * . '=. .’:'"o. . ° 'o

- .f o8 . - * L A .:i '... .

‘.:: e fhe .t S s, .:.".. e .
"'\’. . o.: .O. ‘i: B ° > e g ?t O s . .0.:"': S o .
R : . . . ] 8F. ] . . .

35 Taxa 170 2 Characters 1844 0.0586 Ratio taxa/characters 3.0455

Fig. 13. Plots of differences in AIC values (y-axis) as a function of the number of taxa, characters, and the ratio between taxa and characters,
on 182 empirical morphological datasets. Differences were calculated as AICyy, — AIC;,,,. Negative values (indicated in the grey region of the
diagram) thus correspond to cases where the likelihood approximation of implied weighting is preferred over the Mk model.

the datasets with 50 or more taxa from Goloboff et al.
(2018b) with the datasets from Goloboff et al. (2017).
Given that the chances of characters having signifi-
cantly different amounts of homoplasy are much lower
in datasets with low numbers of taxa, and that IWP
for empirical datasets with up to 15-20 taxa normally
produces the same trees produced by EWP (or at
most, a subset), we decided to study only datasets with
larger numbers of taxa. As some of these were origi-
nally matrices combining molecules and morphology,
the morphology part had only missing entries for some
of the taxa, and these were subsequently removed (this
left only six datasets with fewer than 50 taxa). All the
characters were treated as non-additive. The likeli-
hoods were measured on the tree found by a round of
xmult under EWP with default settings (this is
intended to favour neither the Mk nor the implik mod-
els). The AIC was calculated (with PAUP*) for the
Mk model with gamma rate heterogeneity (with the
default four discrete categories), without estimating
invariant characters (Iscore condvar=no genfreq= equal
rates = gamma shape = estimate).

As shown in Table 2, implik/TWP was the preferred
model in about 20% of the cases (see Supplementary
Material for the complete results of the tests). Holder
et al. (2010) demonstrated that the NCM approxima-
tion to EWP would never be chosen by the AIC, but
the situation is clearly different with other approxima-
tions to weighted parsimony. The discussion above
(see Numbers of parameters) showed that (other things
being equal), implik will tend to be preferred over the
Mk model more commonly for cases with more taxa
and fewer characters. Implicit in the discussion of
Goloboff et al. (2008a: 760) is the idea that larger
numbers of taxa will enable more accurate evaluation
of the relative amounts of homoplasy for each charac-
ter, which would make the results of IWP better

justified for larger numbers of taxa. Plotting (Fig. 13)
the difference in AIC as a function of the number of
taxa, characters, or the ratio between taxa and charac-
ters shows that implik indeed tends to be preferred
more often when the number of taxa is larger relative
to the number of characters. The influence of the num-
ber of taxa is less clear, although there seems to be a
weak trend for implik to be selected (or at least, to be
closer to the fit of the Mk model) more often for lar-
ger numbers of taxa.

Molecular datasets

In our comparisons, we used the set of molecular
datasets from Goloboff et al. (2018b), excluding the
Zilla dataset (due to its size), leaving a total of 37
molecular datasets. The comparisons used the JC69
model, which is the equivalent of the Mk model.
Empirical applications of ML normally use more com-
plex models of character state transformations (such as
K2P or GTR). Those would be equivalent to Sankoff
parsimony. TNT implements both Sankoff parsimony
and an implied weights option for weighting individual
character state transformations (Goloboff, 1997). How-
ever, we currently have no implementation for a likeli-
hood approximation for either of these approaches.
Thus, the appropriate comparison in this case is the
simpler JC69 model. A gamma distribution with four
rate categories was used for the JC69 calculations.

The Supplementary Material contains the complete
results for the tests; a brief summary is presented here.
Almost since its inception, the idea of IWP was pro-
posed to be more relevant in the case of morphology
than in the case of molecular sequences (e.g. Goloboff,
1997: 225; Goloboff et al., 2008a: 769). The compar-
isons based on AIC prefer IWP over EWP in 84% of
the cases, but never prefer IWP over JC69. This may
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in part be due to molecular datasets typically having
many more characters than morphological datasets (cf.
Fig. 13). Goloboff (2013) proposed some extended
weighting methods (XIW) that could be used for
sequence data, such as collectively weighting blocks of
characters, instead of the original approach to implied
weighting. In our comparisons, we tried two alterna-
tive approaches: (i) three groups of characters within
each dataset, with groups created by choosing every
third character, starting from the first, second and
third character in the matrix (codon division), and (ii)
25 groups of contiguous positions (contiguity division),
with the size of each group varying depending on the
total number of characters in the dataset. For the
groups created with codon divisions, XIW was selected
over JC69 for four datasets. The pool of datasets
includes some rRNA (for the spider datasets, see Sup-
plementary Material), where the division in codon
positions has no biological meaning and is not
expected to improve the estimation (and did not), but
those cases were tested for comparability with the
other datasets. For the 25 groups created on the basis
of contiguity, five cases (including two of the rRNA
datasets) selected XIW over JC69. Although the
gamma distribution generally improved the likelihood
of JC69 significantly, the likelihood produced by the
approximation to XIW (even if constrained to have a
single branch length within each block) was high
enough to produce AIC values selecting XIW (with
one or the other division in groups) over JC69+gamma
in 24% of the cases, or nine of 37 datasets. Of course,
our comparison is an oversimplification, considering
only substitutions; the analysis of sequence data needs
to consider other variables, such as indels, or chromo-
some rearrangements. Such repertoire of transforma-
tion is implemented under both parsimony and
likelihood criteria (Wheeler et al., 2014), but it is not
clear to us whether the models assumed are specified
with enough precision to make the likelihood values
truly comparable. Even if they were comparable, the
decision of whether an approach considering those
alternative types of transformations is better or worse
than an approach considering only substitutions can-
not, obviously, rest only on comparisons of AIC val-
ues or other methods for model selection. Regardless,
it is clear that when it comes to considering only sub-
stitutions and prealigned sequences (i.e. the most
widely used type of data), likelihood approximations
to weighted parsimony can produce models that are as
effective as standard likelihood methods.

Conclusions

The approaches described here, based on fixing all
branches of the tree to have the same length, are not

presented with the aim of replacing any existing
method. Instead they are of interest (just like the
NCM of Tuffley and Steel, 1997) as exploratory tools,
to help better understand the behaviour and properties
of parsimony and likelihood methods. Despite some
unusual behaviour in specific cases (which prevents a
recommendation for general applied use), the corre-
spondence between the methods is close enough to
warrant considering EWP and IWP as approximations
to likelihood methods with constant branch lengths. If
the state space that can be assumed under likelihood is
large (which is reasonable in the case of morphology),
the correspondence becomes even closer.

The uniformity of branch lengths used in MP,; and
implik 1s not defended here on the grounds that evolu-
tion must be extremely uniform, but instead on the
interrelated premises that (i) character-state changes in
a given character should a priori be considered as pos-
sibly occurring with the same probability on any of
the branches of the tree, and (ii) the probability of
change in a given character along a branch of the tree
does not depend on whether other characters change
along that branch. The uniformity of branch lengths,
more than describing a very simple and constrained
process, is intended as the best a priori expectation for
a process so complex that no effective prediction can
be easily made as to which branches of the tree are
more likely to have changes in any given character.
This “simplicity of complex systems” (more properly,
simplicity of description and analysis of some of the
aspects of the system) is also observed in other fields
(e.g. statistical physics).

The uniformity of branch lengths has some implica-
tions that can perhaps be viewed as disadvantages: the
approach assumes a perspective based on splitting
points (i.e. speciation or cladogenesis), where the num-
ber of expected changes depends on the branching
points between two nodes (Goloboff, 2003: 99), instead
of the gradualistic perspective embodied in standard
ML models (where time is one of the two main factors
behind the expected number of changes). That split-
based perspective also implies that dating nodes
becomes more difficult and imprecise: accurate dating
can only be accomplished in a gradualistic model where
change is at least partly proportional to time. The belief
that the Mk model allows more precise dating is one of
the reasons why it has become so popular for the analy-
sis of morphological data (Wright, 2017). However,
there is a big difference in expecting morphological
characters to evolve as assumed by the Mk and stan-
dard ML models, and morphological characters actu-
ally having done so. The recent empirical analysis of
Goloboff et al. (2018b) strongly indicates that morpho-
logical datasets are very far from following the rules
assumed by the Mk model. Some dating programs (e.g.
Pathd8; Britton et al., 2007) use input trees where

85U017 SUOWIWIOD) BAITea1D) 3|edldde ay3 Aq peusenob afe saoiLe O ‘@SN JO S9N 10} A%eid 78Ul UO 48] UO (SUONIPUOD-PUR-SLUB)W0D A8 1M A Iq 1 BUI|UO//:SANY) SUOTHIPUOD pUe SWis | 3U18S *[£202/60/7T] Uo ARiqiaul|uo A8]iM ‘80Ul sUeI00D Aq 08EZT R IP/TTTT OT/I0p/L0o A3 | Areiq1juljuoy/sdny wouy pepeojumod ‘9 ‘6TOZ ‘TE00960T



714 Pablo A. Goloboff and J. Salvador Arias | Cladistics 35 (2019) 695-716

amounts of evolution between nodes as well as calibra-
tion points are specified by the user; the amounts of
evolution may well be based on most parsimonious
reconstructions, but this still adds another layer of
assumptions over parsimony itself. Or, alternatively, a
dating with minimum ages can be accomplished by
placing fossils of known age in the cladogram (e.g.
Sterli et al., 2013), which properly acknowledges that
the fossils only place a lower bound on dates.

The two premises used here to justify the uniform
branch lengths (change for different characters uncor-
related, change located equiprobably on any tree
branch) are also shared by the “episodic” model pre-
sented by Goloboff et al. (2018b), a model that seems
to better fit the characteristics of many morphological
datasets. The episodic model uses those two premises,
but only within certain regions of the tree, with the
characters being invariable in the rest of the tree.
Goloboff et al. (2018b) suggested that (with certain
restrictions) the accuracy of parsimony will be compa-
rable for datasets generated under the episodic model,
or under a model where characters are free to vary
over the entire tree. Goloboff et al. (2018b) presented
the episodic model only as a means to generate data-
sets; no likelihood implementation of the episodic
model, or any reasonable approximation, has been
proposed (the covarion model of Fitch and Markowitz
1970 comes closest, but does not incorporate either of
the premises mentioned above). Thus, our comparison
of AIC values includes all the alternatives that can be
effectively tested at this time.

The similarity in results for IWP and a method that
selects optimal values of branch lengths, uniform
across all the branches of the tree and different for the
different characters, helps illuminate several aspects of
IWP that seem to puzzle critics. For example, the idea
of maximizing the sum of weights under a concave
function of the homoplasy is one of the aspects of
implied weighting that Congreve and Lamsdell (2016)
found objectionable, but maximizing sums of weights
directly results from the present approach. The idea
that the cost of adding a step should be smaller as the
number of steps increases can then be justified explic-
itly from a likelihood perspective, as is the choice of
values for the concavity constant. We note that a like-
lihood approach leads to much weaker weighting func-
tions (i.e. larger values of k) than normally used in
empirical analyses (e.g. Goloboff et al., 2008a used k
values up to 16, and Goloboff et al., 2017, up to 12).
The weighting curve resulting from the likelihood
approximation corresponds (for two-state characters,
and datasets with realistic numbers of taxa) to the one
resulting from a k value of roughly half the number of
taxa. This does not mean that the likelihood approxi-
mation provides absolute grounds for selecting exact
values of k. The degree to which the cost of an extra

step decreases with number of steps also changes with
numbers of states, and it depends on a specific model
of equiprobability of transformations between all
states, and a given relationship between the overall
probabilities of change and branch lengths. In addi-
tion, other likelihood approaches (e.g. Felsenstein,
1981b) can be used to justify alternative ways to
downweight characters with homoplasy. However, the
present results do suggest that it may be advisable to
explore weaker concavities than is usually done.

Finally, our findings demonstrate that bombastic
claims on the superiority of standard likelihood
methods over parsimony lack serious justification, and
that much remains to be explored on the differences
(and similarities) between alternative phylogenetic
approaches. A clear example of a novel approach is
Samson et al.’s (2018) analysis, showing that parsi-
mony (with characters weighted either equally or dif-
ferentially) produces better stratigraphic fit than
Bayesian methods. While the importance of likelihood
methods is undeniable, and the use and discussion of
those methods has greatly contributed to clarify many
aspects of phylogenetic inference, this hardly means
that there is no longer a place for parsimony methods
in phylogenetics. The issue of model choice in phylo-
genetics is a complex one, and a simple number such
as the AIC statistic as used here cannot capture all
the aspects of the problem. However, most propo-
nents of model-based phylogenetics (e.g. Holder et al.,
2010) agree that AIC is one of the most important
tools for model choice. The main finding of this paper
is that methods behaving essentially like weighted par-
simony can be preferred over the Mk model, accord-
ing to a criterion that (following Posada and Buckley,
2004) is widely espoused by likelihoodists themselves.
Thus, declarations like O’Reilly et al.’s (2018), pre-
tending to have shown that “parsimony is dead” (p.
631), have no basis other than the authors’ own prej-
udice.
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