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The rapid generation of mutation data matrices
from protein sequences
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Abstract

An efficient means for generating mutation data matrices from
large numbers of protein sequences is presented here. By means
of an approximate peptide-based sequence comparison
algorithm, the set sequences are clustered at the 85% identity
level. The closest relating pairs of sequences are aligned, and
observed amino acid exchanges tallied in a matrix. The raw
mutation frequency matrix is processed in a similar way to that
described by Dayhoffet al. (1978), and so the resulting matrices
may be easily used in current sequence analysis applications,
in place of the standard mutation data matrices, which have
not been updated for 13 years. The method is fast enough to
process the entire SWISS-PROT databank in 20 h on a Sun
SPARCstation 1, and is fast enough to generate a matrix from
a specific family or class of proteins in minutes. Differences
observed between our 250 PAM mutation data matrix and the
matrix calculated by Dayhoff et al. are briefly discussed.

Introduction

Despite the great diversiy of methods devised for the alignment
and comparison of protein sequences, all of these depend at
some point on the simple comparison of two amino acid
residues. The most popular method for measuring the similarity
between amino acids is to use a scoring matrix of some form.
At its simplest, a typical scoring matrix comprises 20 X 20
elements, each element representing some metric that relates
two residues.

The least sophisticated matrix is the 'Unitary Protein Matrix'
(UPM), also known as the 'identity matrix'. The UPM scores
a 1 for exactly matching residues and a 0 for every other
combination. Obviously this matrix lacks sensitivity, as it is
unable to detect the possibility of phenotypically silent
mutational events between two sequences. One advantage of
the UPM is that it is wholly unbiased, providing a very easily
understood alignment metric. The 'percentage identity' between
two sequences is often offered as a universal means of describing
the mutual degree of 'homology' between them. Although a
low identity score can in no way prove or disprove the existence
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of homology, it has proved easier to provide rules of thumb
for identity scoring than for any other scheme. In general, for
two sequences of reasonable length (say 50 residues or more),
a percentage identity of >25% points to a significant structural
homology between them. Feng and Doolittle have described
a fuzzy region around 20% identity which they call the 'Twilight
Zone'. Within this zone and below, it is not possible to tell
the difference between real sequence similarity implying a
common structural framework, and accidental similarity
providing no useful structural information.

Probably the next simplest amino acid scoring matrix is the
'Genetic Code Matrix' (GCM). This matrix scores amino acid
similarity by the maximum number of common nucleotide bases
between their closest matching representative codons. Identical
residues of course share a maximum of 3 bases, whereas
non-identical residues may have only 0, 1 or 2 bases in common.
This matrix has a pleasantly 'genetic flavour' to it, but it must
be realized that the bulk of the selection pressure is on the
protein sequence and not on the underlying DNA sequence.
Although there does seem to be a reasonable correlation between
the nucleotide codons associated with amino acids and the
degree of chemical similarity between them (Woese, 1969, for
example), the rather limited range of match-scores puts the
GCM somewhat in the shade. To detect weak homologies
between sequences a more accurate amino acid comparison table
is required.

McLachlan (1972) published a scoring matrix that attempted
to quantify explicitly the degree of chemical similarity between
amino acids. This matrix, known as the 'Structure-Genetic
Matrix' (SGM), incorporated two sources of information in
evaluating the similarities of amino acids. The first source was
a statistical analysis of observed amino acid exchanges in
available families of proteins, the second was from the
assignment of transition values for each pair of amino acids
depending on the number of overlapping physico-chemical
properties between them. These data were used to 'bias' the
UPM in such a way that only 20 of the 190 possible interchanges
were significantly preferred (Feng et al., 1985). The problem
with the SGM and other matrices that attempt to incorporate
'real' amino acid similarities is that the groupings used are
artificial, there is no guarantee that an arbitrary common amino
acid property is at all important for strucural and functional
conservation between proteins. A better approach is to
concentrate on the observed exchanges between amino acids
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in very similar aligned sequences. Evidently amino acids that
share the appropriate properties will exchange more frequently
than ones that do not. McLachlan's earlier attempt to compare
amino acids (McLachlan, 1971) was based entirely on such a
statistical approach.

Recently, matrices based on the principles of structural
comparison have been described (Risler et aL, 1988; Overington
et aL, 1990). These matrices essentially contain statistics on
the pairwise substitutions observed at structurally equivalent
positions in aligned families of protein structures. In the case
of Overington et aL, a range of matrices are calculated, one
from each class of structural environment, an example of one
such class being 'buried coil' for example. These matrices show
great promise in increasing the accuracy of sequence-to-
sequence, and sequence-to-structure alignments, though the
sparsity of structural data presently available is a significant
disadvantage of this approach.

The most widely used comparison matrix today is the 'Log-
Odds Matrix' and the very closely related 'Mutation Data
Matrix' (MDM) published by Dayhoff etal. (1978). The MDM
was calculated from a study of the exchange probabilities (or
odds) derived from an analysis of the evolutionary changes seen
in groups of very similar proteins. A strictly Markovian model
(i.e. the current probabilities are independent of previous events)
of amino acid exchange is assumed in the Dayhoff model. This
model has been criticized (see George et aL, 1990, for a
review), but comparisons of different scoring schemes have
tended hesitantly to recommend the MDM over other matrices
(Feng et aL, 1985).

In this paper we show a straightforward and automatic
procedure for generating mutation data matrices, in order that
very large sets of sequences can be processed without using
inordinate amounts of computing resources. In particular we
are able to improve the generality of the MDM, in that we now
have access to a much greater variety of protein sequences than
were available to Dayhoff and her workers in 1978, and it is
our hope that the matrices presented here will more clearly
express the general nature of the underlying amino acid
similarities.

The original mutation data matrix (MDM68) was presented
in the original Atlas of Protein Sequence and Structure (1968),
and the method (outlined below) remained virtually unaltered
through each of the subsequent updates. There are five main
steps required for the creation of a mutation data matrix:

1. Construction of the raw PAM matrix

The basic unit of molecular evolution expressed in a MDM is
the 'accepted point mutation', or with a little license to ease
pronunciation: PAM. One PAM is simply the mutation of a
single amino acid in a sequence such that the new amino acid
may be accommodated in the structure and function of the
protein. In general, therefore, amino acid residues that are

frequently seen to exchange in a PAM matrix typically have
similar physico-chemical properties.

The raw PAM substitution matrix is created by considering
the possible mutational events that could have occurred between
two closely related sequences. Ideally we would like to compare
every present-day sequence with its own immediate predecessor
and thus accurately map the evolutionary history of each
sequence position. Of course this is impossible, and so two main
courses of action may. be taken to approximate this informa-
tion. The method used by Dayhoff was the 'common ancestor'
method. Here closely homologous pairs of present-day
sequences are taken and a common ancestral sequence inferred.
Given only a pair of present-day sequences, an unambiguous
inferred common ancestor cannot be generated. A complete
phylogenetic tree is required in this case to allow the most
probable common ancestors to be inferred for each tree node.
The important thing to realize is that the inference of common
ancestors must consider the overall topology of the tree. Every
suggested common ancestor must be traced back to higher level
nodes and evaluated in order to determine whether or not that
ancestral sequence is the most probable for the tree as a whole.

An alternative to the common ancestor method is to relate
present-day sequences by their pairwise alignment distances,
estimating a possible phylogenetic tree from this distance matrix.
This method was first described by Fitch and Margoliash
(1967). Although construction of the distance matrix is a trivial
exercise, the generation of an optimal phylogenetic tree from
this data again requires an exhaustive iterative analysis such
that the total number of mutations required to produce the
present day set of sequences is minimized. Although both of
the above methods have advantages and disadvantages, matrix
methods are now most widely used.

No matter which method is finally used to infer the
phylogenetic tree, construction of the PAM matrix is the same.
The raw'matrix is generated by taking pairs of sequences, either
a present-day sequence and its inferred ancestor, or two present-
day sequences, and tallying the amino acid exchanges that have
apparently occurred. Given the following alignment:

ACDEFL
AGDEAL

we count four PAMs (C — G, G — C, F — A and A — F).
The raw PAM matrix is obviously symmetric given the fact
that we cannot know whether for example C mutated to G or
G mutated to C; there is no harm in this as we are interested
in discerning the extent of similarity between amino acids here,
and 'similarity' is generally thought of as being symmetric.
Treatment of gaps/insertions in an alignment is arbitrary: one
possibility is to count gap characters as another type of amino
acid; another possibility that is probably the safer of the two
is simply to ignore gaps. We are after all only interested in
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the exchange of amino acids, the deletion of a particular amino
acid tells us nothing of its relative similarity to other amino
acids, though it does provide information as to the amino acid's
characteristic 'mutability'.

2. Calculation of relative mutabilities

Evidently if we are to estimate the probability of a given
mutation event, we must consider two pieces of information.
Firstly how likely is it that a given amino acid A changes at
all, secondly how likely is it that the given amino acid changes
to amino acid B given that A does change? We are therefore
interested in the conditional probability that amino acid A
changes to amino acid B given that A is seen to change. The
probability of amino acid A changing at all in a given unit of
time is usually expressed as the 'relative mutability' of A.
Relative mutability is simply calculated as the number of
observed changes of an amino acid divided by its frequency
of occurrence in the aligned sequences. From the alignment
shown earlier, A is seen to change once, but occurs three times
in the alignment. The relative mutability of A from this
alignment alone is therefore calculated as xh. An overall
measure of relative mutability must allow for the different evolu-
tionary distances and different sequence lengths found in a non-
specific collection of sequences. Mutability is normalized by
defining the basic unit of evolutionary distance as being a single
accepted point mutation in a sequence of length 100. The
average relative mutability of an amino acid given this defini-
tion is therefore the total number of changes observed for this
amino acid in all the families of proteins considered, divided
by the total sum of all local frequencies of occurrence of the
amino acid multiplied by the numbers of mutations per 100
residues in each of the branches of all the family trees.

3. Calculation of the mutation probability matrix

The basic matrix in the generation of MDM type matrices is
the 'mutation probability matrix'. Elements of this matrix give
the probability that a residue in column j will mutate to the
residue in row / in a specified unit of evolutionary time.
Evidently a diagonal element of this matrix represents the
probability of residue i = j remaining unchanged, and hence
being easily calculated according to the following formula:

The value of X relates to the evolutionary distance represented
by the probability matrix, accordingly:

= 1 - \mj (1)

where mj is the average relative mutability of residue j , and
X is a proportionality constant.

Non-diagonal elements are given by:

(2)

where A,j is a (non-diagonal) element of the raw PAM matrix.

100
(3)

where/ is the normalized frequency of occurrence of residue
i, and P approximates the evolutionary distance (in PAMs)
represented by the matrix. This relationship breaks down for
P » 5.

P is usually given the value 1 so that the basic mutation
probability matrix represents a distance of 1 PAM. Matrices
representing larger evolutionary distances may be derived from
the 1 PAM matrix by matrix multiplication. Squaring the 1
PAM matrix gives a 2 PAM matrix, cubing it a 3 PAM matrix
and so forth.

4. Calculating the log-odds matrix

Of more use than the mutation probability matrix in the
alignment of protein sequences is the 'relatedness odds matrix'.
This symmetric matrix represents the probability of residue j
being replaced by residue i per occurrence of i, and is derived
from the mutation probability matrix simply by dividing each
element My by the normalized frequency of occurrence of i,
fi. For the purposes of sequence comparison the relatedness
odds for each alignment position should be multiplied together
in order to arrive at a total 'alignment odds' value. To avoid
slow floating-point multiplications, the relatedness odds matrix
is usually converted to the log odds-matrix (also known as the
mutation data matrix) thus:

MDM.j = 10 log.o R,j (4)

where Rjj are elements of the relatedness odds matrix (MDMV

values are rounded to the nearest integer).

Automating the procedure

Although computational tools were used in constructing the
original MDMs, in particular for the inference of common
ancestral sequences and the generation of phylogenetic trees,
the whole process was only partially automated. This was hardly
of consequence considering the small number of available
sequences in the 1970s, but as at the time of writing some
23 000 protein sequences are available for analysis, it is evident
that a more streamlined approach is now required.

Our method for generating MDMs is in fact very similar in
essence to that described by Dayhoff « al. (1978). The method
involves three steps: (i) clustering the sequences into homo-
logous families, (ii) tallying the observed mutations between
highly similar sequences and (iii) relating the observed mutation
frequencies to those expected by pure chance. The main
difference here is in our use of an approximate method (a
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pairwise present-day ancestor scheme) for inferring me
phylogenetic relationships among the sequences in the data set.
A program was written to compute all the relevant data
automatically from a file of protein sequences.

In view of the relative inefficiency of standard methods for
inferring maximum parsimony phylogenetic trees it was found
to be necessary to implement an approximate method to find
the reasonable family trees by means of cluster analysis of the
sequence data. Although the limitations of using such simple
means alone for the inference of phylogenetic trees are well
known (Czelusniak et al., 1990), and the large-scale structure
of such crude phylogenetic trees tends to be somewhat incorrect,
the relationships between closely related sequences are inferred
correctly. To verify our methodology, we attempted to re-create
the set of sequences used to construct MDM78. Using these
sequences we found our mutation data closely approximated
those in the original work with 164 of the 400 mutation
frequencies (number of mutations occurring per 10000
observations) being identical, and 350 differing by five or less.
It should be pointed out that though our results very closely
match those of Dayhoff et al., our matrices are not derived from
the same explicit evolutionary model outlined in the original
work. The practical significance of this fact depends on the
intended application of the matrices. In terms of sequence
analysis applications, a derivation independent of the choice of
evolutionary model might well be preferred due to the reduced
possibility of bias (in particular, maximum parsimony nucleotide
substitution methods will tend to produce results biased towards
the exchanges expected from the genetic code rather than
generally observed amino acid similarities). A further justifica-
tion for determining relationships via a pairwise scheme is that
of the 2621 families of proteins in the current release of SWISS-
PROT, 79% contain fewer than five sequences. With such small
families the results of simple clustering and those of rigorous
maximum parsimony analysis are indistinguishable with respect
to the present application.

In generating the initial distance matrix, we do not assume
that the input sequences are in any way pre-clustered into family
groups, and are therefore forced to calculate the entire distance
matrix to sort the sequences into families, and thereafter produce
trees for each family. Evidently the vast majority of pairwise
comparisons are unnecessary, so some simple (and quick) means
is needed to filter out sequence pairs that have no chance of
producing alignment identity scores >85%. We propose here
a simple approximate algorithm for 'estimating' the percentage
identity between two protein sequences without prior alignment.
Our algorithm considers the distribution of residue triplets (or
3-tuples) between the two sequences. If there are sufficient
identical triplets between both sequences we assume that the
sequences show a potential homology. The longest sequence
is taken and a hash table constructed containing the frequencies
of occurrence of the constituent triplets. The triplet frequencies

( SWBSPROT J

Fast pepttde sequence comparison

Check high scoring pairs by NW alignment

BuOd single linkage phonogram

I
Algn most dosety related sequences

I
Count exchanges observed between pain

I
f PET91 J

Fig. 1. An outline or the described method for generating mutation data matrices.

100

. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9

Fig. 2. Relationship between triplet scores and per cent identity after
Needleman-Wunsch alignment with constant gap penally.

of the shorter sequence are then compared with those of the
longer. A comparison score is calculated thus:

vw
E

5 = nr - AAA

,,. n^) - 2
(5)

where ff^ and fb
pqr are the frequencies of occurrence of triplet

pqr in sequences a and b, and na and nb are the respective
sequence lengths.

This normalized score (S) is effectively the fractional area
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Table I. The 250
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D
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E
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H
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M
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T
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Y
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130 protein sequences
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1

1
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1

247

5

0
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2

0

0

2
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-3

4
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-1

0
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-3

216
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0

1

0

1
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1
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-2

1
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1

2
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9

5

2
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2
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2

-2

-4

0

-1

-1
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-2
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119

180
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8
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5

0

0

-3

-4

1
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-5

-2

-1

-1

-5

-4
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-1

-3

-5

-1

1

-1
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-4
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6
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1
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0

0

-1

-1

-3

4
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25
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4

2
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3
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-1

1
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4
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34

38

314
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5

-3

3

2

0

-2

-1

•2

-1

2
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2348

758

102

7

8S8

754
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85

75
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5

-2

-5

-2

•1

-1

-3

-3

-3
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61

39

27

23

52

30

27

21
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6

0

-2

-1

0

-3

-2

2

51

16

15

8

66

9

13

18

50

196

1093

7

49

8

-3

-2

-2

-1

5

0
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' 217

31

39

15

395

71

93
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31

578
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23

36

6

1

1

-4

-3

-1

2413

413

1738

244

353

182

156

1131

138

172

436

228

54

309

1138

2

1

-3

-1

• 1

2440

230

693

151

66

149

142

164

76

930

172

398

343

39

412

2258

2

-4

-3

0

11

109

2

5

38

12

12

69

5

12

82

9

8

37

6

36

8

15

0

-3

41

46

114

89

164

40

15

15

514

61

84

20

17

850

22

164

45

41

9

-3

1766

69

55

127

99

58

226

276

22

3938

1261

58

559

189

84

219

526

27

42

4

Values have been multiplied by 10 and rounded to the nearest integer. The upper half of the matrix shows the actual numbers of exchanges observed.

Table II. Mutation probability matrix for an evolutionary distance of I PAM. Values are scaled by a factor of 105

A
R
N
D
C
Q

E
Q
H
1
L
K
M
F
P
S
T
W
Y
V

A
98759

41
43
63
44
43
82
135
17
28
24
28
36
11
150
297
351
7
11
226

R
27

98962

23
8
52
154
16
70
164
12
19
334
22
3
36
51
33
65
12
8

N
24
19

9B707
235
13
33
25
33
171
21
6
108
14
3
5
214
100
1
30
7

D
42
8
284
98932

5
27
3S8
66
53
6
3
14
10
2
7
30
22
3
23
16

C
12
21
6
2

99450

2
1
11
IS
3
3
1
8
14
3
44
9
23
43
13

Q
23
125
31
21
4

98955

140
10
233
3
29
122
19
2
66
22
21
7
10
7

E
66
20
36
478
3
211
99042

70
15
7
6
107
11
3
12
19
20
7
4
29

Q
129
102
58
95
41
17
83

99369

15
4
5
20
10
4
16
139
24
41
4
35

H
5
74
92
24
17
130
6
5

98867

4
12
12
8
11
26
17
11
3
134
3

1
19
13
26
6
8
4
6
3
10

98722

122
11
253
41
5
21
134
7
16
504

L
26
34
12
6
15
64
9
6
49
212
99328

-13
350
230
97
54
25
49
22
161

K
22
390
150
17
3
176
103
16
31
12
9

99101

37
1
13
28
57
5
5
7

M
11
10
8
4
10
11
4
3
8
113
90
15

98845

10
4
7
49
5
4
71

F
6
3
3
1
28
2
2
2
18
31
101
1
16

993S7

6
38
6
22
222
24

P
99
36
6
6
6
81
10
11
58
5
53
11
8
8

99278

140
59
4
6
11

S
264
69
344
40
147
37
21
129
51
28
40
32
19
65
190

98548

325
21
43
28

T
267
38
137
25
28
31
19
19
28
149
16
57
123
8
69
278
98670

5
12
67

W
1
18
0
1
16
2
2
8
2
2
8
1
3
8
1
4
1

n
3

Y
4
8
23
15
68
8
2
2
189
10
8
3
6
179
4
20
6
24

99377
5

V
193
11
11
21
41
12
31
32
8
630
117
8
201
40
14
27
76
16
11

98772

of overlap between the two triplet histograms. Scatter plots sequences) plotted against our scoring metric were produced
based on all possible pairwise alignment scores in a set of 200 (a subset of this data is shown in Figure 2). The raw triplet
protein sequences (containing a mixture of related and unrelated scores were thus compared with Needleman-Wunsch scores
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(>40% ID), and the following
coefficient 0.986) was observed:

relationship (correlation Table III. Relative mutabilities and normalized frequencies of occurrence for
the 20 amino acid residues, calculated from the PET91 data set. compared with
the values from Dayhoff el al. (1978)

.39121005°

where S is the normalized triplet frequency score, and the result
/ is in units of percentage identity.

By aligning only those sequence pairs with corrected triplet
scores indicating sequence identity ^45% and subsequently
excluding sequence pairs with alignment scores of ^ 8 5 %
identity we were able rapidly to generate a sparse distance
matrix complete enough for our purposes. By combining this
very rapid heuristic measure of identity with an efficiently coded
dynamic programming algorithm as a 'second level filter' we
were able to construct the distance matrix at an average rate
of over 1000 similarity score calculations per second on a Sun
SPARCstation 1 (standard Sun C compiler). Out of the 130
million pairwise alignments that would normally be required,
only 559 692 passed the initial similarity filter, speeding up the
process nearly 200-fold.

Using this matrix of identity scores, the sequences were
subjected to an efficient single-linkage clustering algorithm, with
mutation statistics being generated for each sequence by aligning
it with the sequence that offers the highest pairwise alignment
score. For each sequence pair, amino acid substitutions are
tallied with alignment positions containing at least one
non-standard residue code (B, Z, X or 'Gap') being ignored.

Implementation

The matrix generation program MAKEPET is coded in standard
Sun C, and should be portable to most platforms supporting
a C compiler. The required matrix PAM distance and other
control parameters are specified as command line arguments.
MAKEPET takes as input a single file of sequences in 'compact
PIR' format, where each sequence is preceded by two descrip-
tion lines and terminated by a '*' character. A simple keyword
searching program SEQGREP allows specific sets of sequences
to be compiled from the complete sequence databank, permit-
ting the easy generation of matrices biased towards particular
structural or functional classes (membrane-bound proteins for
example).

Results

The upper half of Table I shows how many of each of the
possible 190 exchanges were observed, with the lower half of
Table I showing our equivalent of the widely used MDM78
matrix Qogio relatedness-odds matrix for 250 PAMs), which
we call PET91 (Pairwise Exchange Table 1991). The 1 PAM
mutation probability matrix required to generate mutation data
matrices for evolutionary distances other than 250 PAMs is
shown in Table n. PET91 was generated from Release 15.0
of the SWISS-PROT protein sequence database (Bairoch, 1990),

Ala (A)

Arg(R)

Asn (N)

Asp(D)

Cys(C)

Gin (Q)

Glu (E)

Gly (G)

His (H)

lie (I)

Leu (L)

Lys(K)

Met (M)

Phe(F)

Pro(P)

Ser(S)

Thr(T)

Trp(W)

Tyr(Y)

Vul (V)

Relative
Mutability"
(1991)

100

83

104

86

44

84

77

50

91

103

54

72

93

51

58

117

107

25

50

98

Relative
Mutability'
(1978)

100

65

f34

106

20

93

102

49

66

96

40

56

94

41

56

120

97

18

41

74

Relative
Frequency of
Occurrence
(1991)

0.077

0.051

0.043

0.052

0.020

0.041

0.062

0.074

0.023

0.053

0.091

0.059

0.024

0.040

0.051

0.069

0.059

0.014

0.032

0.066

Relative
Frequency of
Occurrence
(1978)

0.087

0.041

0.040

0.047

0.033

0.038

0.05O

0.089

0.034

0.037

0.085

0.081

0.015

0040

0.051

0.070

0.058

0.010

0.030

0.065

Relutive to Alu which i.s ortritnirily unsigned a mutuhihty of 100.

containing 16 941 sequences, though sequences <20 residues
were excluded to avoid insignificant alignments. It should be
noted that the 250 PAM matrix is shown here for reasons of
comparison with the most common variant of the original
matrix, and that matrices calculated for evolutionary distances
other than 250 PAMs are often found to perform better for some
sequence comparisons. The recently described sequence
databank search program, BLAST (Altschul et al., 1990), for
example, uses a 120 PAM Dayhoff matrix by default.

Of particular interest here are the differences between these
results and those of the original work, a rough impression of
which may be gained from a comparison of the relative
mutabilities shown in Table in with those observed by Dayhoff
(1978). A value of 0.76 is obtained for the Spearman rank
correlation coefficient between the old and new relative
mutabilities, indicating little overall change. Ser (serine) and
Thr (threonine) are found to be the most mutable residues in
this work, as opposed to asparagine and serine in the 1978 table.
Tip (tryptophan) and Cys (cysteine) are found to be least
mutable here, which agrees with the earlier findings, though
the mutability of Cys found here is double the original value.
The frequencies of occurrence of the amino acid residues (Table
I) show no significant differences from the earlier values.

280

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/8/3/275/193076 by guest on 16 M
ay 2023



Rapid generation or mutation data matrices

Table IV. The difference matrix (PET91U - MDM78y) between the 250 PAM PET91 matrix and the MDM78 matrix

A

R

N

D

C

0

E

G

H

1

K

U

f

P

s

T

W

Y

V

0

•1

0

0

-1

-1

0

•1

•1

0

0

•1

0

e

•1

•3

0

•1

•1

•i

0

0

• 1

•1

t

•1

•1

; * '

0

•1

•1

0

-a

t i

-1

0

0

• 1

1

•1

0

0

•1

0

e

«

0

0

•1

•1

.1

0

e

i

t

r1

-1

•1

«

-1

-1

0

0

*1

-1

(

-1

t l

.1

0

+1

»3

t 2

O

•1

VI
fti
0

V • .

>

• i

+1

+1

.1

0

•1

• 1

-1

-1

,1

0

e

-1

•1

+1

-1

•1

e

e

0

*a

.z

-1

-1

»i

• i

0

•1

«

-1

•1

+1

•1

0

•1

•1

•1

*1

0

0

e

.1

0

«i

0

1

0

0

e

• 1

e

i

c

0

-1

.1

-1

-1

(

•1

•J

-1

-1

0

0

•1

•1

t

'*t

0

0

0

0

•4

-1

+1

-1

-1

(

-1

-1

0

-1

-1

•1

•1

-1

0

0

•1

-1

0

•1

1

0

• 1

0

-1

0

0

0

e

•1

t

•a

•1

0

e

0

0

•1

e

.1

. i

•1

•1

+1

•1

0

, ,*

s

-1

•1

0

-1

0

•z

0

tt

-1

-1

0

s

•1

: < )

0

0

0

•1

•1

0

0

• 1

e

.1

•4

.1

0

0

Mi
-1

0

0

-1

T 2

•1

-1

•1

0

•t

-1

0

-1

0

0

0

-1

0

'«?:••

0

0

: . l

•3

0

0

-1

1

0

-1

0

(

0

•1

•1

•1

0

0

0

• J

e

•1

s

-i

«

-1

•1

0

•1

-1

•1

• 1

, 1

0

•1

0

0

.4

•2

.1

•

•1

«

+1

-i

•3

-1

•1

•i

0

0

•*;

* \

»»•:

•

•1

-1

•1

0

•J-.

m
0

0

-i

-1

+1

• i

0

0

•1

0

-1

-1

0

-1

e

.1

0

0

0

•1

0

A R N D C O E G H I L K U F P S T W Y V

A positive matrix element indicates that the PET9I value is higher than the related value in MDM78. Absolute differences i 2 are shown shaded.

Table IV shows the pattern of changes between the MDM78
and the PET91 matrices. Both Cys and Trp show very different
patterns of mutability, both now showing a much greater
tendency to exchange with other amino acid residues than in
the previous study. This can be attributed mainly to the paucity
of mutational events involving Cys and Trp in the original data
set. Overall, in Dayhoff s data 35 amino acid exchanges were
never observed at all (e.g. Cys and Trp); here, however, all
possible exchanges have been observed (Cys and Trp
exchanging 38 times in the current data set). PHI91 incorporates
442 Trp exchanges and 1292 Cys exchanges, where only 7 Trp
exchanges and 28 Cys exchanges were recorded for the
MDM78 matrix. Interestingly, however, the average absolute
change of the Cys matrix elements is higher than that of Trp,
even though the Cys sample was larger than that of Trp in the
1978 data set. This anomaly is attributable to the fact that Cys
residues occur in three very different chemical roles in proteins:
as free sulphydryl groups ( - S - H ) , in disulphide bridges
( - S - S - ) , and as ligands for metals (-S..X). The number
of observed cys exchanges in the original work would have been
insufficient to sample these three situations effectively. In
addition, the Cys residue exchanges observed in the original
work were mostly from the metallothionein sequences included
in the data set.

r R H

0
ED

N °

s r

A T

W

C

Y

F

L

It is also interesting to note that even with the very large
amount of data collected here, some amino acid exchanges are
still very seldom observed: Trp and Asn (asparagine), for
example, were only seen to exchange twice. Indeed it is hard
to be certain whether these highly infrequent exchanges are real
observations or artefacts caused by errors in the sequence
database.

A common method for interpreting the complex trends in a
similarity matrix is to project the 20 X 20 = 400-dimensional
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pattern onto a plane via multidimensional scaling (French and
Robson, 1983). The plot in Figure 3 shows such a projection,
which clearly delineates the relationships between the 20 amino
acids found in PET91. The general trends shown in the PET
matrix are essentially those found in the original Dayhoff matrix:
hydrophobicity and size being the most significant factors.

Discussion

In general, the most significant differences (PET91 matrix
elements differing from MDM78 elements by ± 2 or more)
correspond almost exactly to exchanges that were observed no
more than once in DayhofFs sequence alignments. Despite these
few anomalous differences, however, it is interesting to see how
little the bulk of PET91 differs from MDM78. The fundamental
amino acid similarities remain unchanged, and given that we
have now collected enough data to iron out the residual sampling
errors in the mutation data matrix, we feel confident that PET91
represents a relatively unbiased measure of amino acid similarity
in sequence data and should be used in preference to the
MDM78 in sequence analysis applications. Investigation is
currently under way as to the performance of our matrices
compared to others with regard to sequence alignment and
databank searching. We are also developing matrices biased
to particular protein classes and residue environments, and a
dipeptide mutability matrix (400 x 400 elements) which has
enabled us to investigate short-range sequence neighbourhood
effects on residue mutability.

The matrix generation programs and the complete data,
including all intermediate matrices and tables required for
constructing matrices for evolutionary distances other than 250
PAMs, may be obtained from the authors in printed or machine-
readable form.
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