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Abstract.—Phylogenetic methods typically rely on an appropriate model of how data evolved in order to infer an accurate
phylogenetic tree. For molecular data, standard statistical methods have provided an effective strategy for extracting
phylogenetic information from aligned sequence data when each site (character) is subject to a common process. However,
for other types of data (e.g., morphological data), characters can be too ambiguous, homoplastic, or saturated to develop
models that are effective at capturing the underlying process of change. To address this, we examine the properties of a
classic but neglected method for inferring splits in an underlying tree, namely, maximum compatibility. By adopting a
simple and extreme model in which each character either fits perfectly on some tree, or is entirely random (but it is not
known which class any character belongs to) we are able to derive exact and explicit formulae regarding the performance of
maximum compatibility. We show that this method is able to identify a set of non-trivial homoplasy-free characters, when
the number n of taxa is large, even when the number of random characters is large. In contrast, we show that a method that
makes more uniform use of all the data—maximum parsimony—can provably estimate trees in which none of the original
homoplasy-free characters support splits. [Character compatibility; homoplasy; parsimony; phylogenetic tree.]

Inferring phylogeny is a central goal for systematics
because nested sets of monophyletic taxa provide
a pivotal anchor point for the construction of
classifications (Angiosperm Phylogeny Group
1998) as well as for understanding evolutionary
history (Felsenstein 2004). During the last 20 years,
monophyletic taxa have been predominantly estimated
using model-based inference methods and molecular
sequence data. The continuing role of morphological
data to estimate monophyletic taxa has not been without
discussion and controversy (e.g., (Hillis 1987; Scotland
et al. 2003; Jenner 2004; Wiens 2004)) but the number of
morphological analyses in comparison to analyses using
DNA sequence data continues to decline as judged by
the number of morphological matrices deposited in
TreeBASE (Piel et al. 2010).

The exact role of morphological data for phylogenetic
inference, and in particular morphological data from
fossil taxa, has been a particular source of debate
(Patterson 1981; Gauthier et al. 1988; Scotland et al.
2003; Grantham 2004; Wiens 2004; Springer et al.
2008; Wiens et al. 2010). These views occupy the
complete spectrum from the opinion that fossils are best
interpreted in the light of monophyletic taxa based on
extant organisms (Patterson 1981) to the view that a
combined total evidence approach utilizing all data is
to be preferred for inferring phylogeny (Huelsenbeck
et al. 1996; Nixon and Carpenter 1996; Wiens et al.
2010). Other solutions for integrating morphological
data in phylogenetic inference involve the analysis of
both molecular and morphological data separately to
seek congruence among data sets on the basis that
this provides the strongest evidence that phylogenetic
reconstruction is accurate (Penny and Hendy 1986;
Swofford 1991; Salichos and Rokas 2013). Still other
approaches recommend using molecular scaffolds in

which trees derived from molecular sequences are used
to constrain the analysis of the morphological data on
the basis that morphological characters may contain too
much homoplasy or saturated, non-independent signal
(Springer et al. 2008; Davalos et al. 2014). Despite these
differences of opinion surrounding morphological data
and phylogeny reconstruction, most authors agree on
the importance of morphological data from both extant
and fossil taxa to provide a full and comprehensive
understanding of evolutionary history.

Despite misgivings and legitimate concerns about
morphological data possibly being saturated, too
homoplastic and/or non-independent (Wagner 2000;
Springer et al. 2007, 2008; Davalos et al. 2014), these
same authors remain committed to finding solutions to
include at least some morphological data in estimates of
phylogeny. This is relevant because of the important role
of taxon sampling in phylogeny reconstruction (Hillis
1996, 1998) combined with the fact that most taxa that
ever lived are now extinct and therefore only exist as
fossils (Hillis 1987). Furthermore, how to best integrate
and assign fossil taxa for dating nodes of phylogenetic
trees is also a topic of some interest (Ronquist et al.
2012). In this context, we revisit compatibility as a
method for estimating monophyletic taxa in the context
of morphological data. Our motivation stems from
the claim that morphological data sets often contain
ambiguous, saturated phylogenetic signal that can
approximate to random data for extant (Kelly et al.
2014) as well as fossil taxa (Wagner 2000; Springer
et al. 2007, 2008; Davalos et al. 2014). We focus on
compatibility, a method that seeks to discover unique
compatible characters describing splits in the underlying
phylogenetic tree, rather than attempting to explain or
model all congruent and incongruent characters (Farris
1983; Lewis 2001).
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Almost fifty years ago, Wilson (1965) and Camin and
Sokal (1965) (and later Le Quesne (1969); Estabrook
(1972); Le Quesne (1972, 1975); Estabrook and McMorris
(1977); Farris (1977); Felsenstein (1978); Estabrook and
Meacham (1979); Meacham (1981); Felsenstein (1982);
Meacham and Estabrook (1985)) explored compatibility
— termed “character consistency” by Wilson (1965)
and “character congruence” by Patterson (1982) – as
a method for analyzing morphological data to infer
phylogeny. Despite some more recent discussion (e.g.,
(de Pinna 1991; Wilkinson 1994; Dress et al. 1997;
Felsenstein 2004; Gupta and Sneath 2007)) compatibility
has remained on the periphery of methods for inferring
phylogeny, as it has largely been set aside, initially
in favour of maximum parsimony, and, more recently,
by model-based methods for inferring phylogeny from
DNA sequence data. For an overview of compatibility
methods in phylogeny reconstruction see Meacham and
Estabrook (1985) or Felsenstein (2004).

Compatibility was described by Wilson (1965) as
a method of character “weighting” based on the
phylogenetic significance of the character. Wilson (1965)
aimed to capture taxonomic procedure explicitly in
a new, more rigorous way by using a method that
weighted unique unreversed character states that were
consistent between each other and a hierarchical
hypothesis, to the exclusion of more “fickle” character
states. We here interpret “fickle characters” sensu
Wilson (1965) as referring to homoplasy but also
other factors (including analogy, inaccurate character
concepts, inaccurate coding) that can lead to effectively
random patterns of character states shared between taxa.

Compatibility was therefore a form of character
weighting, seeking to give maximum weight to
characters that evolve once and display no homoplasy.
Le Quesne (1969) stated that a character is compatible
with a tree if it can evolve on that tree without
homoplasy. He stated that a character with N states
that requires N−1 changes on a tree, is compatible with
that tree. He further reasoned that the best tree was
the tree that maximized the total number of compatible
characters (Le Quesne 1969). In a sense, the method
of character compatibility formalized a phylogenetic
method that captured the intuitive taxonomic practice
of recognizing taxa based on conserved nonhomoplastic
characters (Wilson 1965). The justification provided in
the compatibility literature for attempting to identify
and utilize only characters that evolve once in estimates
of phylogeny were three-fold. First, a set of characters
that exhibit a higher level of compatibility than would
be expected by chance alone may reflect a common
process, namely descent with modification (Wilson
1965). Second, this statistical property (compatibility)
does not apply to more noisy or homoplastic characters
and therefore these should be excluded from further
consideration (Le Quesne 1969, 1972, 1975; Meacham
1981). Third, that the history of taxonomy and the
recognition of natural groups has hitherto utilized
nonhomoplastic characters and that inferences about
convergent and homoplastic characters were after

the fact interpretations from classifications based on
compatible characters (Wilson 1965; Patterson 1982).

Compatibility methods have been most often
compared and contrasted with cladistic parsimony
methods that were developed and refined during a
similar time period (Hennig 1966; Farris 1977; Farris and
Kluge 1979; Farris 1983). Compatibility and parsimony
methods were shown to share certain characteristics
including statistical inconsistency (Felsenstein 1978).
In contrast, the two methods — parsimony and
compatibility — differed most fundamentally in their
treatment of homoplasy and character conflict (Wilson
1965; Farris and Kluge 1979; Meacham and Estabrook
1985; de Pinna 1991).

Compatibility methods seek to infer phylogeny from
uniquely derived nonhomoplastic characters that are
consistent and nonrandom in their distribution (Wilson
1965), whereas parsimony methods seek to explain
all characters by incorporating and minimizing ad hoc
assumptions of homoplasy (Farris 1983). To account for
character conflict, parsimony analysis adjusts the level
of universality of some characters to fit the general
most parsimonious tree of all characters, such that all
characters are treated as informative, and the principle
of parsimony determines the most economical (fewest
number of changes) explanation of the data (Farris 1983;
de Pinna 1991). Comparing parsimony and compatibility
directly, de Pinna (1991) concluded that compatibility
“has little power in determining hypotheses of character
evolution in the presence of incongruence.” The view
of de Pinna (1991) is that parsimony analysis seeks to
explain all data relative to a model of character evolution
whereas, in contrast, compatibility seeks to discover
compatible characters only (Wilson 1965).

The role and utility of character weighting for inferring
phylogeny was explicitly explored in the phylogenetics
literature during this period (Wilson 1965; Farris 1969;
Neff 1986; Carpenter 1988; Sharkey 1989; Hillis 1991;
Hillis et al. 1993). Adherents of parsimony also explored
weighting schemes to give reduced weight to characters
based on empirically determined levels of homoplasy
(Farris 1969; Carpenter 1988; Goloboff et al. 2008). The
relative importance and weight ascribed to various
characters within a data set remains an active topic of
discussion in contemporary phylogenetics (Eddy 2004;
Felsenstein 2004; Lemey et al. 2009; Cox et al. 2014),
and several factors have been investigated, including:
strong signal to noise ratios (Salichos and Rokas 2013),
random data (Wenzel and Siddall 1999), saturation
(Wagner 2000; Kelly et al. 2014), codon bias (Cox et al.
2014), third position changes (Cox et al. 2014), reliability
and homoplasy (Goloboff et al. 2008), heterogeneity of
substitution rates among different lineages (Ho 2009),
differences between DNA and protein data (Kumar et al.
2008), the use of BLOSUM62 matrix for aligning proteins
(Eddy 2004), and the weighting of transitions versus
transversions (Posada and Crandall 2001). We therefore
consider a re-examination of compatibility methods as
part of a much wider research agenda seeking to explore
and model the relative strength of phylogenetic signal
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within data sets (Goloboff et al. 2008; Salichos and Rokas
2013; Cox et al. 2014).

More specifically, our motivation to re-examine
compatibility stems in part from a recent meta-analysis
of morphological datasets in TreeBASE (Kelly et al.
2014) demonstrating that many morphological data sets
contain very little signal when compared with random
data. Similar results were observed in paleontology
for 48 out of 56 fossil data sets Wagner (2000) in a
study that identified a deterioration of phylogenetic
structure through time due to character state exhaustion
(saturation) in many clades. These observations —
very few uniquely derived morphological characters
(synapomorphy) and much morphological data that is
very problematic — may explain a historical paradox
in systematics, that is that morphological data has been
extraordinarily successful at estimating monophyletic
taxa by synapomorphy albeit for a limited number of
nodes but at the same time most morphological data are
inherently problematic for inferring phylogeny (Wagner
2000; Scotland et al. 2003; Grantham 2004; Springer et al.
2007, 2008; Wagner 2012; Bapst 2013, 2014; Davalos et al.
2014).

Today, maximum likelihood and Bayesian techniques
are the main tools for inferring phylogenetic trees
from most (genetic) character data (Felsenstein 2004).
Although a great variety of stochastic models have been
developed and applied for aligned DNA sequence site
data, there has been comparatively much less work
on modeling the evolution of discrete morphological
characters. One exception is Lewis (2001), who showed
how a symmetric Markovian model with a finite number
of states could be applied to morphological data in a
maximum likelihood setting (see also Huelsenbeck et al.
(2008) for a somewhat different Bayesian analysis). An
obstacle for many types of morphological (or fossil)
data is that, in contrast to DNA site substitutions, there
is unlikely to be a common mechanism across the
characters (e.g., ratios of “branch lengths” within a tree
may vary across characters) and the absolute rates of
evolution may also vary in unknown ways across the
characters. For example, some characters may be highly
conserved, with just a single “innovation” occurring
once in an evolutionary tree, while other characters
may have flipped states many times, resulting in an
essentially random pattern of states at the tips of the
tree.

In this article, we analyze what happens when the data
arise in precisely such a manner: some characters evolve
without homoplasy, whereas others are essentially
random, but we have no idea which class a given
character belongs to. We adopt this scenario because we
can obtain exact results, and it shows what is possible
in the extreme. Nevertheless, it also provides some
guidance on what may be expected in less polarized
settings. Our approach complements the study by
Susko et al. (2005) who showed how biases affect
standard tree reconstruction methods in the presence of
varying degrees of randomization within sequences or
sites.

One can model such extreme data using standard
and simple Markov models on an phylogenetic tree,
such as the Mk model of Lewis (2001), as follows:
The characters that evolve without homoplasy simply
correspond to characters that are evolving at a very
slow rate (i.e., they are highly conserved), whereas those
that are essentially random are evolving at a very fast
rate. This model can be viewed either as a two-fold
mixture of the common mechanism model (i.e., the ratio
of the branch lengths within a tree is the same across
all characters, with these branch lengths merely being
scaled up or down according to whether the character
is conserved or random) or as a model in which there is
no such constraint on the branch length ratios. To keep
matters simple, we consider binary characters (which
corresponds to k =2 in the Mk model), but similar results
could be developed more generally.

Although evolution at a low substitution rate will
lead to (mostly) homoplasy-free characters, many of
these characters will be unvaried (i.e., all taxa would
be in the same state). However, as noted by Lewis
(2001), such unvaried characters are generally not of
interest in comparative morphological studies, and it is
generally more relevant to consider data that exclude
such unvaried characters. This “censoring” of the data
(effectively by the investigator looking for characters that
reveal differences between taxa) provides no problem for
our analysis, and we will accommodate this additional
perspective explicitly in Theorem 1.

DEFINITIONS: CHARACTER COMPATIBILITY AND RANDOM

BINARY CHARACTERS

We begin with some definitions. A binary character �
on a set X of n taxa is an assignment of a state (0 or 1)
to each taxon x in X. We say that � is nontrivial if at least
two taxa are in one state and at least two taxa are in a
different state; otherwise, the character is trivial. Thus,
a trivial character is either unvaried (all taxa receive
the same state) or it is an “autapomorphy” (one taxon
receives one state, and all remaining taxa the other state).
Nontrivial characters are also sometimes referred to as
“(parsimony) informative” characters. The partition of a
character � refers to the partition of X into (at most) two
parts that � induces (i.e., for each partition, there are two
characters of that partition, obtained by interchanging
the states 0 and 1).

A phylogenetic X-tree displays a binary character if the
character fits on the tree with one state change at most
(i.e., no homoplasy). For example, in Fig. 1, the character
that assigns taxa a, b and e one state and the remaining
taxa a different state is displayed by the tree on the
right, but not by the tree on the left. Two characters are
compatible if there is a phylogenetic X-tree that displays
both characters. This is equivalent to requiring that the
two subsets of taxa (one for each character) that have
a state that is different to the state of some arbitrary
reference taxon x0 ∈X comprise a pair of sets that are
either disjoint (i.e., have empty intersection) or nested
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FIGURE 1. The tree on the right resolves the tree on the left by the addition of an edge (u′,u′′) to resolve vertex u. The tree on the right displays
any character � that assigns taxa a,b,e one state and c,d,f ,g,h a second state, so � is compatible with this tree as well as the tree on the left (even
though that tree does not display �).

(i.e., one set contains the other). A character is compatible
with all other possible characters if and only if that
character is trivial.

More generally, a sequence of binary characters is
compatible if there is a phylogenetic X-tree that displays
them all. It is a classic result that a set of characters is
compatible if and only if every pair of characters in the
set is pairwise compatible. Moreover, there is a unique
minimally-resolved phylogenetic tree that displays these
characters, where the nontrivial splits of the tree
correspond to the bipartitions of X induced by the
nontrivial characters (see, e.g., Semple and Steel (2003)).

Given a character � on X, and a phylogenetic X-tree,
� is compatible with T precisely if T or some resolution of
T displays �. An example is shown in Fig. 1.

A random binary character f on a set X of n taxa, is
an assignment of a state (0 or 1) to each taxon x in X,
performed independently across the taxa and with an
equal probability of 0 or 1 for each taxon. Thus, a random
binary characters simply picks one of the possible 2n

binary characters on X with equal probability.
Note that a two-state symmetric Markov process on a

phylogenetic tree produces a random binary character
in the limit as the rate of substitution across all (or
sufficiently many) branches grows. Such processes were
investigated in the context of morphological evolution
in Lewis (2001). Here, we work with the limiting
value of completely random data since it allows exact
calculations. However, our results have a bearing when
the data contain characters that are “near random” (i.e.,
near saturation), as we describe briefly in the concluding
comments.

We will henceforth regard phylogenetic trees as
unrooted (but there is no real loss of generality with this
assumption).

RESULTS

The main result in this article is the following.

Theorem 1. Suppose a data set D consists of a sequence of
binary characters (with or without any unvaried characters
removed), that consists of a sequence S1 of compatible
characters and a sequence S2 of M independent random binary
characters, all on the same set X of n taxa (these sequences are
intertwined and so we are not told which character belongs to
which class).

(i) With a probability of at least 1−� where �=2M2
(

3
4

)n
,

no two characters in S2 are compatible. Consequently,
with probability at least 1−� the following hold:

(1) there exists a maximal compatible subset S of D
that contains all of S1;

(2) any such S falls into one of the following two cases:
(a) S=S1; or (b) S consists of all (or all but one)
characters from S1 and one character from S2;

(3) a maximal compatible sequence S of characters for
D can be identified by an efficient (polynomial
time) algorithm from D (without knowing in
advance which characters are in S1 and S2).

(ii) If, in addition, M ·
(

K
(

1
2

)n−3 +
(

1
2

)K
)

≤�, where K is

the number of distinct partitions produced by nontrivial
characters in S1, then with a probability of at least 1−�,
Case (b) in Part (2) of (i) will never arise.

(iii) Let m be the number of nontrivial characters in S1 and
let L be the average value (over those m characters) of
the smaller number of taxa in the split determined by
the character. Let T1 be any binary tree that displays
all of the compatible characters in S1. If M and n are
both large (e.g., >30) and 27(L−1)2m2/2Mn<1, then
the expected number of phylogenetic trees that are more
parsimonious for D than T1 and yet display none of the
m perfectly compatible nontrivial characters in S1 grows
exponentially with n (it is at least 10n for n≥30).

The proof of this theorem is provided in the Appendix,
with one small exception: here we outline the simple
algorithm referred to in the third claim of part
(i). Such an algorithm is relevant, because, although
software is available to search for maximum compatible
subsets of characters (Felsenstein 1993), in general it
is an intractable (NP-hard) problem to find a largest
subsequence of compatible characters in an arbitrary
collection of binary characters. This was established by
Day and Sankov (1986) who reduced the maximum
compatibility problem for binary characters to the well-
known problem of finding a maximum clique (a set
of vertices all connected to each other) in an arbitrary
graph. This connection is the same as we use here —
given a sequence D of binary characters construct a graph
that has a vertex for each character in D, with an edge
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between two vertices if the corresponding characters are
compatible. Now, for D partitioned (as here) into two
disjoint sets — S1 and S2 — if no two of the (random)
binary characters in S2 are compatible, and each pair
of binary characters in S1 is compatible, the resulting
graph is easily seen to be a “chordal” graph (i.e., every
cycle of length four or more has a chord). For such
graphs, there exist fast (i.e., polynomial-time) algorithms
for finding maximum cliques, based on constructing a
“perfect elimination ordering” for the graph (for details,
see Gavril (1972)). Moreover, this also suggests a useful
diagnostic for testing whether the model described here
is appropriate: simply check whether the associated
character compatibility graph is chordal (a process that
can also be carried out quickly (Rose et al. 1976)).

The reader should be clear that Theorem 1 describes
a prediction of a model, and for real data there will
generally be greater ambiguity as to the identity of the
set of homoplasy-free characters than the sharp results
described in parts (i) and (ii) of that theorem provide.
We now turn to some examples and graphs to illustrate
the content of Theorem 1.

Examples
(1) As a simple application, suppose we have 30

taxa, and 20 binary characters, of which 8
are distinct, nontrivial, and perfectly compatible,
while the remaining 12 are random. Then
applying Parts (i) and (ii) with n=30,K =
8,M=12 (noting that 2(12)2(3/4)30 =0.051, and

12·
(

8
( 1

2
)27 +( 1

2
)8)=0.047) the probability the

8 perfectly compatible characters comprise the
unique maximum compatible subset of characters
for this data set is at least 90%. In this example, M
is not large enough to apply part (iii) usefully.

(2) Suppose that we have n=100 taxa, and suppose
our data D is made up of a sequence S1 of
perfectly compatible nontrivial binary characters
interspersed (in some unknown way) with a
sequence S2 of M random binary characters.
Provided that M is no more than (say) 10,000,
then the conditions for Theorem 1(i) applies with
�=0.0001, since 2M2( 3

4
)n ≤0.000064. Therefore,

we can easily distinguish/find the perfectly
compatible characters from S1 in D, and any
maximum compatible tree for D will display all
or all but one of these characters and, at most,
one other (random) character. Also, at least one
maximum compatible tree for D contains every
character in S1.

If, in addition, at least 20 of the 97 possible
nontrivial character partitions are present in S1
(i.e., K ≥20), then the condition for Theorem 1(2)
applies with �=0.01. If we combine this with the
previous result, it is ∼99% probable that a maximal

compatible subsequence of characters from D will
consist of exactly just the characters in S1.

Finally, to illustrate part (iii) of Theorem 1, suppose
that S1 contains at most 30 nontrivial characters
in total, counting repetitions (i.e., m≤30), with
L=7, and that M=5000, say. Then, n and M are

sufficiently large, and 27(L−1)2m2

2Mn ≤0.88, which is
small enough to apply part (iii). Thus, the expected
number of binary trees that are simultaneously (a)
more parsimonious (on the entire data set) than
T1 (any given binary tree that displays all of the
perfectly-compatible characters in S1), and (b) that
fail to display any of the nontrivial characters in
S1, is at least 10100. This suggests we should have
no confidence that a maximum parsimony tree
for the entire data set would have any success in
displaying any (let alone several) of the perfectly
compatible informative characters in S1. Moreover,
provided that K ≥20, we saw in the previous
paragraph that the maximal compatible sequence
of characters from S is almost certain to consist of
just the characters in S1.

Graphs
The above examples provide a “snapshot” of how the

results of Theorem 1 apply. However, it is also helpful
to visualize the interplay of the various parameters
(n,K,M,m) that result from the inequalities in Parts
(i)–(iii). In Fig. 2, the graphs (A), (B), and (C) illustrate
aspects of Parts (i), (ii), and (iii) of Theorem 1,
respectively.

Graph (A) shows the graph of 1−2M2
(

3
4

)n
verses M,

which is a lower bound on the probability that among
M random binary characters, no pair of characters are
compatible. Although this bound decays quadratically
with M, the exponential dependence on n ensures that
when the number of taxa is large, this probability will be
close to 1 even for relatively large values of M.

Graph (B) shows a lower bound on another probability
— namely that none of M random binary characters are
compatible with a sequence of binary characters that
induce K nontrivial splits. In this case, the value of n
plays a vanishing role once it becomes more than about
15 or so; we have drawn the graph for n=30 but it would
look identical for any larger value of n.

Graph (C) shows the upper bound on the number m
of compatible nontrivial binary characters as a function
of M for the number of nontrivial binary characters for
which maximum parsimony performs as described in
Theorem 1(iii). In this graph, we have estimated L by
considering the expected size of clades in Yule trees up to
size n/2 (using the (asymptotic) estimate 2ln(n/2) which
follows from Theorem 4.4 of Rosenberg (1976)). Notice
that the upper bound on m is quite modest as a function
M (the number of random binary characters), and grows
relatively slowly with n. In other words, to achieve
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A B C

FIGURE 2. A) The probability that no two characters from among M random binary characters are compatible lies above the curves shown.
B) The probability that none of M random binary characters on 30 or more taxa are compatible with a sequence of nontrivial binary characters
that induce K distinct splits lies above the curve shown (for K =8,12,15). C) The maximal value of m allowed in Theorem 1 so that when m
nontrivial binary characters are sampled at random from a Yule pure-birth tree T, a large (>10n) number of trees are more parsimonious than
T and yet display none of the m characters.

this extreme performance of maximum parsimony, the
characters in S1 will form a tree that is only partially
resolved (this may not be necessary, but the current proof
of part (iii) allows only sublinear growth of m with n).

DISCUSSION

Methods for inferring phylogenetic trees from
character data are most often an exercise in modeling
all data. In these situations, all data are viewed as
providing evidence of phylogeny and the task is to
infer character-state changes at the correct node(s) on
a tree. In these circumstances, some character-state
changes are unique, whereas others contain homoplasy.
A confounding factor for phylogenetic inference are high
rates of homoplasy that approximate to random data,
such that phylogenetic signal is masked. In addition,
mistakes in DNA sequence alignment, ambiguous
coding regimes and disagreements about the correct
conceptualization of morphological structures can add
a level of nonevolutionary noise to a data matrix.
In this sense, data matrices contain unique signal
(characters that contain no homoplasy), homoplastic
signal (characters that change more than once but
provide evidence for phylogeny at various nodes on
a tree), and noise (characters that contain saturated
levels of homoplasy with no phylogenetic signal and
also characters that do not accurately reflect or capture
evolutionary history e.g., mistakes in coding and
conceptualization of morphological data). Therefore,
here, “noise” refers to saturated levels of homoplasy and
other factors (analogy, inaccurate character concepts,
inaccurate coding, character dependency, continuous
rather than discrete data, alignment error, etc.) that lead
to essentially random patterns of character states shared
between taxa (Wenzel and Siddall 1999). When the data
exhibit little homoplasy and noise, then evolutionary

trees can be reliably reconstructed from simple methods,
such as maximum parsimony and neighbour joining
with dense taxon sampling (Hillis 1996; Graybeal
1998). For data where the characters exhibit moderate
but widely varying degrees of homoplasy (across
the tree), according to some common process across
the characters, then simple methods like maximum
parsimony can be misleading, depending on the branch
lengths of the true tree (Felsenstein 1978), whereas
maximum likelihood and Bayesian approaches have
more sound robust properties (e.g., consistency) for
recovering the correct tree from sufficient data. In both
these cases, maximum compatibility tends to perform
poorly alongside the standard methods that use all of
the available data more even-handedly.

However, when the data consist of a combination of
some characters that exhibit very little noise alongside
other characters that are very noisy (and we do not
know which class a given character belongs to), a
standard method that regards all characters as having
the same signal-to-ratio strength is problematic. In this
case, our results suggest that a more accurate strategy
is to find a maximum compatible subset of characters,
as this will contain (nearly all) the characters that
exhibit very little noise and, provided the number of
taxa is large, very few additional characters from the
highly noisy class. Essentially, the separation of “signal”
and “noise” is achieved by the characters themselves;
maximum compatibility merely identifies which class
each character belongs to. The accuracy of this approach
relies on a simple mathematical fact: the probability
that two random binary characters are compatible with
each other converges to zero exponentially quickly as
the number of taxa grows. Consequently, in this setting,
the mutually compatible characters are likely to directly
reflect and capture the common underlying process of
descent with modification, or, in some circumstances,
concerted convergent evolution (Holland et al. 2010).
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A possible advantage of compatibility is that it may
be less sensitive to reduced taxon sampling as other
methods that seek to make more uniform use of data.
In contrast, for methods that seek to explain high rates
of homoplasy at the correct nodes on a tree, dense taxon
sampling is crucial for accurate reconstruction (Graybeal
1998).

We should stress that we are not advocating a
wholesale return to maximum compatibility; as
mentioned, there are settings where it is clearly
inferior to parsimony and/or likelihood and Bayesian
approaches. Instead we argue that maximum
compatibility may have some advantages when data are
such that each character either has very low or very high
associated noise. Note that maximum compatibility
may lead to an unresolved tree with polytomies (unlike
most other tree reconstruction methods which tend to
return a fully-resolved tree). Moreover, just because a
clique of compatible characters is significantly larger
than expected for random characters, these compatible
characters may fit a tree that is different from the species
phylogeny if those characters have been subject to
convergent evolution (Holland et al. 2010).

Note that a highly noisy character (under our
symmetric two-state model) will tend to have about half
the taxa in one state and half in the other. However, the
observation of such near-equality in the character state
counts does not, in itself, mean that the character is noisy;
after all, completely homoplasy-free evolution can also
produce such a character when a change of state occurs
near some central edge of a tree that has around half the
taxa on one side, and half on the other.

Our results show that a large number of “noisy”
characters will overwhelm the signal for parsimony
present in the “noise-free” characters if they are all
treated on a level footing as samples from an identical
process. In contrast, our results show that maximum
compatibility is accurate even when the number of
random characters M grows exponentially with the
number n of taxa (provided M grows no faster
than (4/3)n/2). Also, although our analysis deals with
an extreme model (characters with zero or infinite
noise), standard continuity arguments imply that our
results will provide some indication of how maximum
compatibility will behave in less extreme settings.

Our analysis of maximum parsimony was chosen
for simplicity, but it has implications for other
phylogenetic tree reconstruction methods such as
maximum likelihood (ML). To see this, suppose the
data consist not just of compatible and random binary
characters, but also many unvaried characters. Data
of this type would be generated by a 2-rate model
— very slow rates (leading to mostly unvaried but
also some homoplasy-free characters), and very fast
rates (leading to random characters). Theorem 7 of
Tuffley and Steel (1997) implies that the maximum
likelihood tree for this data analyzed under a model
that assumes a common mechanism and a constant rate
across characters is always a maximum parsimony tree
for this data, when the proportion of unvaried characters

is sufficiently large. This means that Theorem 1 will
apply in this setting (with maximum parsimony replaced
by ML) since the unvaried characters play no role in
either parsimony or compatibility analyses. Our use of
maximum parsimony was also confined to the simplest
form of this method in which all character state changes
are weighted equally, and all characters are also given
equal weight; relaxing the second of these constraints
has been explored by various authors, including for
morphological data (Goloboff et al. 2008).

We restricted our analysis to binary characters, as
these enjoy the property that a collection of them is
compatible if and only if every pair are. The results
could, in principle, be extended to multistate characters;
however, the mathematical analysis would be more
complex, since pairwise compatibility is only a necessary
(but not sufficient) condition for the compatibility of a
collection of such characters. Within the two-state model,
one can also consider moving from a symmetric to a
nonsymmetric model of substitution. In this case, the
probability that two random characters are compatible
increases, though it still decays exponentially with n
(for any fixed probability that a given taxon is in
state 1). A further minor extension of our results is that
the requirement that the random binary characters be
independent in Parts (i) and (ii) of Theorem 1 can be
weakened to requiring just pairwise independence, since
the proof of both parts relies only on Boole’s inequality.

We mention a further caveat; Theorem 1(iii) refers to
the expected number of trees that are more parsimonious
that T1 and yet fail to display any nontrivial character
in S1. The proof (Appendix) relies on showing that a
randomly selected binary tree has a positive probability
of being more parsimonious than T1 (and also a high
chance of failing to display any nontrivial characters
in S1). This suggests that the chance of T1 being a
(globally) most-parsimonious tree for the data should
be infinitesimal (given that there are >10180 trees on 100
taxa, and each has a reasonable chance of “beating” T1).
However, some care is needed here: if we consider the
event that T′ is more parsimonious for the data than T1,
then these events (one for each T′) are not independent.
This lack of independence does not cause any problem in
the statement of Theorem 1(iii), as it refers to expectation,
and the expectation of a sum of random variables is
the sum of the expectations, regardless of whether they
are dependent or not. Although it seems reasonable to
expect that T1 would be very unlikely to be a maximum
parsimony tree for the data, further analysis would be
needed to formally prove this.

The motivation for exploring a method that seeks
to identify monophyletic taxa from a small subset
of discrete character data will be obvious to most
systematists who have studied patterns of variation
across a clade of any size. Put simply, clear-cut
discrete characters are few and far between. It is
uncontroversial to state that morphological data and
evolutionary novel character concepts (e.g., carpels,
nucleic acid, seeds, legumes, vertebrae, amnion, etc.)
have been developed and refined hand in-hand,
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alongside the context of monophyly and classification
(e.g., carpels of angiosperms, nucleic acids of life,
seeds of spermatophytes, legumes of leguminosae,
vertebrae of vertebrates, amnion of amniotes). These
character concepts were discovered by a combination
of good observational skills coupled with a subsequent
hypothesis of monophyly that could be examined in
the context of other hypotheses of monophyly by a
process of reciprocal illumination throughout the history
of systematics. In agreement with Wilson (1965), we
suggest that compatibility is a method that captures
these aspects of systematic practice and is therefore
worthy of consideration for inferring monophyly from
morphological data.

Compatibility offers a further way to analyze
morphological data independent of molecular data.
For those who wish to analyze morphological data in
combination with molecular data then compatibility
can be implemented as a distinct data partition within
a total evidence context. Compatibility could be used
to screen out random signal and identify compatible
characters for subsequent analyses in combination with
molecular data. In a sense, compatibility is less ambitious
and perhaps less attractive than methods that seek to
model all available data but at the same time it is,
for some classes of data, more realistic in accepting a
lack of resolution (Bapst 2013) and a limited number
of “good” morphological characters. It is also possible
that compatibility offers a new perspective for the study
of morphological character evolution that attempts to
incorporate two basic empirical findings of systematics.
One, that there are very few unreversed conserved
characters and, two, that the majority of characters
are problematic to model as discrete data as their
phylogenetic distribution approaches saturation.

Here we have shown that for a model in which
each character either fits perfectly on some tree, or
is entirely random (but it is not known which class
any character belongs to) we are able to derive exact
and explicit formulae regarding the performance of
maximum compatibility. The is significant because it
is perhaps the first time that any tree reconstruction
method (on any number of taxa) can be analyzed
so exactly under a model that involves randomness
in the data. Furthermore, we show that compatibility
is able to identify a set of nontrivial homoplasy-
free characters, when the number n of taxa is large,
even when the number of random characters is large.
This is significant because one might have expected
that, by chance alone, compatibilities within a few of
the random characters would result in a number of
incorrect splits being estimated by compatibility, and
we provide precise conditions under which this will
not occur. In contrast, we show that a method that
makes more uniform use of all the data — maximum
parsimony — can provably estimate trees in which
none of the original homoplasy-free characters appear
as splits. This is significant because “by chance alone”
the random data can overwhelm the phylogenetic signal
in the homoplasy-free characters through the eyes of

some methods (e.g., parsimony) but not others (e.g.,
compatibility). Although compatibility excludes much
of the data, and so may result in unresolved trees, this
conservative feature of the method has an advantage in
the extreme model we study of being relatively immune
to the influence of the random characters when the
number of taxa is large. On the other hand, maximum
parsimony — or indeed maximum likelihood when
many additional constant characters are present — is
influenced by all of the characters, so a large number
of random ones will tend to lead to trees that display
none of the homoplasy-free characters as splits.

Taken together our results are significant for
contemporary systematics because, although they deal
with an extreme model, the mathematical results
provide a caution that in this setting “more can be
less” — methods that attempt to score a tree using all
the characters may miss most (or indeed all) of the
unique nontrivial characters that have evolved without
homoplasy. Yet there exist other methods (such as
compatibility) that can be immune to this, at the price
of being more conservative. In future work, it would be
useful to explore the extent to which this holds under
less extreme models, where any mathematical analysis
would be much less straightforward.
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APPENDIX: PROOF OF MAIN RESULT

Preliminaries
Suppose we have an unrooted phylogenetic X-tree

T, which may or may not have polytomies. Our first
result provides a bound on the probability that a random
binary character is compatible with T, and an exact
expression for the probability that two random binary
characters are compatible with each other. Part (b) of
the following proposition differs from an earlier result
by Meacham (1981) (based on the even earlier work of
Wilson (1965)) who considered the probability that a pair
of random binary characters are compatible, conditional
on the number of taxa in each state for the two characters.

Proposition 1.

(a) The probability that a random binary character is
compatible with a given binary character that divides
X into blocks of size r, and n−r is:(

1
2

)r−1
+
(

1
2

)n−r−1
−
(

1
2

)n−2
,
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whenever 1≤r≤n−1 (the probability equals 1 if r∈
{0,1,n−1,n}).

(b) The probability pn that two random binary characters
on a set of size n are compatible is given by:

pn =4
(

3
4

)n
−
(

1
2

)n−1
(

3−
(

1
2

)n−1
)

.

Thus, pn is bounded above by 4
(

3
4

)n
(and is

asymptotically equivalent to it as n grows).

(c) For an unrooted phylogenetic tree on a leaf set X of size
n, the probability pT that a random character on X is
compatible with T satisfies:

pT ≤
∑

v∈I(T)

(
1
2

)n−deg(v)
,

where I(T) is the set of interior (internal) vertices of T
and deg(v) is the degree of vertex v (i.e., the number of
edges incident with v).

(d) Moreover, for any unrooted phylogenetic tree T that has
at least k interior edges, and n leaves, we have the upper
bound:

pT ≤k
(

1
2

)n−3
+
(

1
2

)k
.

Before turning to the proof of this result (which is
central to the proof of Theorem 1) we illustrate its
application.

Example: To illustrate Part (b) of Proposition 1,
consider n=3 and n=4 (for which p3 =1 and p4 =58/64).
It is clear that any two binary characters on a set of size
three must be compatible, since they are (both) trivial,
in agreement with p3 =1. For a set of size four, there
are 24 ×24 ordered pairs of binary characters (c1,c2)
and precisely 6×22 =24 pairs are incompatible, which
gives the proportion of pairs that are compatible as
1−24/162 =58/64=p4.

Proof of Proposition 1

Parts (a) and (c) rely on the following observation:
Recall that a binary character � is compatible with a
phylogenetic X-tree if either T or some refinement of
T displays �. Now, any refinement of T that displays �
is achieved by resolving a uniquely determined single
interior vertex of T (Semple and Steel (2003), Lemma
3.1.7), as illustrated in Fig. 1 (this fact is the basis of
the “tree-popping” algorithm of Meacham (1983)). Now,
if an interior vertex v has degree d then there are 2d

ways to select a subset S(v) of the incident branches. For
each such selection we obtain a binary character that
is compatible with T, defined by the condition that the
state of each leaf is 1 if and only if the path from that
leaf to v contains an edge in S(v). Moreover, each binary
characters that is compatible with T can be generated in
this way (for some interior vertex v and some set S(v)).

Thus, the total number of binary characters on X that are
compatible with T is at most

∑
v∈I(T)2deg(v), and since

there are 2n binary characters on X in total, then the
probability that a random character is compatible with
T is as bounded in Part (c).

To establish Part (a) we view a binary character � that
divides X into blocks of size r and n−r as a phylogenetic
X-tree T with two interior vertices v1 and v2 of degrees
r+1 and n−r+1 (Fig. 1 provides an example with n=
8,r=3). Let Ei be the leaf edges of T adjacent to vi (for i=
1,2) and let e be the edge {v1,v2}. Recalling the definition
of S(v) from the previous paragraph, the total number of
binary characters on X that are compatible with T is the
2r+1 choices for S(v1) plus the 2n−r+1 choices for S(v2)
minus the four choices that are counted twice as they
produce the same character, namely:

(i) S(v1)=S(v2)=∅;

(ii) S(v1)=E1,S(v2)={e};
(iii) S(v1)={e},S(v2)=E2; and

(iv) S(v1)=E1 ∪{e},S(v2)=E2 ∪{e}.
Thus the number of characters compatible with � is
2r+1 +2n−r+1 −4, and dividing by 2n (the total number of
binary characters on X) gives the expression in Part (a).

Part (b): Let pn(r) be the probability described by
Part (a) for all values of r between 0 and n, and let

�n(r)=(nr)(1
2

)n
be the probability that a random binary

character divides X into blocks of size r and n−r. Then,
by the law of total probability, the value of pn defined in
Part (b) can be written as

pn =
n∑

r=0

�n(r)pn(r). (1)

Now, since �n(0)pn(0)=�n(n)pn(n)=
(

1
2

)n
, and we can

write the term on the right of Equation (1) as:
(

1
2

)n−1 +∑n−1
r=1 �n(r)pn(r). Moreover, from Part (a), for 1≤r≤n

we can replace pn(r) by �n(r)=
(

1
2

)r−1 +
(

1
2

)n−r−1 −(
1
2

)n−2
to get: pn =

(
1
2

)n−1 +∑n−1
r=1 �n(r)�n(r). By a slight

rearrangement, this is equivalent to:

pn =
(

1
2

)n−1
+
(

1
2

)n
[
−�n(0)−�n(n)+

n∑
r=0

(
n
r

)
�n(r)

]
.

From here, use of the identity:
∑n

r=0
(n

r
)
xr = (1+x)r for

x= 1
2 and straightforward, if tedious algebra, leads to the

given expression for pn.
Part (d): If T has k interior edges, then T has |I(T)|=k+1

interior vertices (since the total number of edges is n+k,
and the total number of vertices is n+|I(T)| and since
T is a tree, the number of vertices exceeds the number
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of edges by exactly 1). Moreover, by the degree-sum
formula,

∑
v∈I(T)deg(v)+n·1 is twice the number of

edges of T (i.e., 2(n+k)) and so:∑
v∈I(T)

deg(v)=n+2k, with 3≤deg(v)

≤n−k for all v∈ I(T). (2)

If we place the interior vertices in an arbitrary order
v1,...,vk+1 and let xi :=n−deg(vi), then from Part (c) we
have:

pT ≤
k+1∑
i=1

(
1
2

)xi

. (3)

Now, the constraints in (2) are equivalent to the following
constraints on the xi:

k ≤xi ≤n−3 and
k∑

i=1

xi =k(n−2),

and the right-hand-side of (3) is maximized under these
constraints when xi =n−3 for k values of i, and xi =3 for
the one remaining value of i. This leads to the expression
in (d). �

Proof Theorem 1
We first note that it suffices to prove the results under

the assumption that no unvaried characters are removed.
For Parts (i) and (ii) this follows from the observation that
removing unvaried random characters from S2 cannot
increase the probability of either (i) a pair of characters
in S2 being compatible, or (ii) a character from S2 being
compatible with every nontrivial character from S1. For
Part (iii) the probability that a random binary character
on n taxa is unvaried is 1

2n−1 ; this ensures that the same
stated results apply (asymptotically) for large n.

Part (i): By Boole’s inequality, the probability that
at least one pair of the M random binary characters
in S2 are compatible is bounded above by

(M
2
)
pn, and

this is less or equal to
(M

2
)·( 3

4

)n ≤2M2
(

3
4

)n
by Part (a)

of Proposition 1. Thus, if this last quantity is at most
� then with probability at least 1−� no pair of the
random binary characters in S2 will be compatible. The
remainder of the first two claims in part (i) now follows
by simple combinatorics, noting that the characters in S1
are all compatible with each other. The proof of the third
claim in part (i) was described immediately following
the theorem.

Part (ii): A character � in S2 is compatible with all
of the characters in S1, precisely if � is compatible with
the minimal phylogenetic X-tree T that displays the K
distinct partitions induced by the nontrivial characters
in S1. Since T has K interior edges, we can apply Part
(d) of Proposition 1 to conclude that the probability a
random character is compatible with all of the characters

in S1 is at most
(

K
(

1
2

)n−3 +
(

1
2

)K
)

. Thus, if this quantity

is at most �/M, then, again by Boole’s inequality, the
probability that at least one of the M characters in S2
is compatible with all the characters in S1 is at most �.
This completes the proof of part (ii).

Part (iii): For a binary character � on X, and any
phylogenetic X-tree T let ps(�,T) denote the parsimony
score of � on T. For a random binary character f on
X, we let ST denote the (random variable) ps(f ,T).
Moreover, if T′ is a binary phylogenetic X-tree selected
uniformly at random we let �T be the (compound)
random variable defined by �T :=ST −ST′ . Notice that
�T has two sources of randomness — first the choice of
T′, and once this is given, ST −ST′ then has variation due
to the random character f . We first establish the following
result (where, in Lemma 2, the “outer” expectation in (i)
and probability in (ii) is with respect to the random tree
T′, whereas the “inner” (conditional) variance in (i) and
(ii) is with respect to the random character (conditional
on the choice of random tree T′):
Lemma 2.

(i) E[Var[�T |T′]]=Var[�T]≥
(

4
27 −o(1)

)
n,

(ii) P

(
Var[�T |T′]≥ 2

27 n
)
≥ 1

3 −o(1),

where o(1) refers here and throughout the rest of the
article to any term that decays to zero as n grows.

Our proof of this lemma combines a number of ideas.
One is the well-known variance formula that applies
when a random variable Y depends on another random
variable W:

Var[Y]=Var[E[Y|W]]+E[Var[Y|W]]. (4)

Also helpful is the fact that the distribution of the
parsimony score of a random binary character is the
same across all binary trees (Steel 1993), which implies
that E[ps(f ,Ta)−ps(f ,Tb)]=0, for all pairs of binary
phylogenetic X-trees Ta,Tb. So, by taking Ta =T and Tb
the random binary tree T′, we have E[�T |T′]=0. This
in turn implies that E[�T]=E[E[�T |T′]]=0, and that
Var[E[�T |T′]]=0, which further implies, by Equation (4)
(using Y =�T,W =T′) that Var[�T]=0+E[Var[�T |T′]],
establishing the first part (the equality) in Lemma 2(i).

To establish the inequality in Lemma 2(i) we make a
further crucial observation. Let R be the random variable
that records how many leaves in the generated random
binary character f are in state 1. By Equation (4) (applied
with Y =�T , W =R) we have

Var[�T]≥E[Var[�T |R]], (5)

(since the second first term on the right-hand-side of
Equation (4) is always non-negative).

Furthermore, although the random variables ST and
ST′ are dependent, once we condition on R they become
(conditionally) independent. Therefore,

Var[�T |R]=Var[ST |R]+Var[ST′ |R]. (6)
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Moreover, both the expressions on the right of this last
equation are continuous functions of p=R/n of the form
ϕT(p)n and ϕ(p)n, respectively; moreover, for any binary
tree T, Corollary 7.2 of Steel (1993) gives:

lim
p→ 1

2

ϕT(p)= 2
27

−o(1),

whereas Theorem 1 of Moon and Steel (1993) gives:

and lim
p→ 1

2

ϕ(p)= 2
27

−o(1)

(recall o(1) denote any term that converge to 0 as n
grows). By the law of large numbers (or the Central Limit
Theorem), p converges in probability to 1

2 as n grows, and
so by Equation (5):

Var[�T]≥E[Var[�T |R]]=
(

4
27

−o(1)
)

n. (7)

which establishes the inequality in Lemma 2(i).
We now use Part (i) of Lemma 2 to derive Part (ii), by

means of the following general observations. Suppose
that a,b>0 and that Y is any random variable that always
lies between 0 and a(2+�) and that E[Y]≥a(1−�). This
ensures the inequality:

a(1−�)≤E[Y]≤a(2+�)P(Y ≥a/2)+(a/2)(1−P(Y ≥a/2)),

which simplifies to:

P(Y ≥a/2)≥ 1
3

· 1−2�

1+2�/3
. (8)

We apply Inequality (8) with Y =Var(�T |T′), so that
E[Y]=Var(�T), and taking a= 4

27 n, Lemma 2(i) ensures
that E[Y]≥a(1−�), where and � is a term of order o(1).
It remains to show that Y is bounded above by a(2+�)
where � is also a term of order o(1).

By definition, Var(�T |T′)=Var(ST |T′)+Var(ST′ |T′)−
2Cov(ST,ST′ |T′) and Var(ST |T′)=Var(ST) and
Var(ST′ |T′) are both equal to

(
2

27 +o(1)
)

n (Steel

1993). Moreover, |Cov(ST,S|T′)| is at most the square
root of the product of these two variances. In summary,
Var(�T |T′)≤a(2+o(1)). Inequality (8) now gives
Lemma 2(ii).

Returning to the proof of Part (iii) of the Theorem 1,
Theorem 4 of (Bryant and Steel 2009), shows that the
proportion of binary trees that share a given number
of nontrivial splits with any given binary tree T on the
same leaf set is asymptotically Poisson with a mean
	T equal to the number of “cherries” of T divided by
2n. Since the number of cherries in any binary tree
with n leaves is at most n

2 , we have 	T ≤ 1
4 . Thus, the

probability that T′ shares no nontrivial splits with T1
is at least exp(−1/4)≈0.78. Since all the characters in
S1 are displayed by T1, the corresponding splits of the
nontrivial characters constitute a subset of the splits of
T1, and so the probability that T′ displays one or more
nontrivial character in S1 is also at most exp(−1/4).

We combine this with Lemma 2(ii) which shows
that for n large, with probability at least ∼ 1

3 , a binary
phylogenetic X-tree T′ selected uniformly at random will
have Var(�T |T′) at least 2

27 n. Thus, the probability that
a binary phylogenetic X-tree T′ selected uniformly at
random satisfies both (a) Var(�T |T′) at least 2

27 n, and
(b) T′ displays none of the nontrivial characters in S1 is
(asymptotically) at least 1−(1−exp(−1/4)+(1−1/3))>
0.11, by the Bonferroni inequality.

For the rest of the proof T′ will refer to any one of these
(at least) 11% of all unrooted binary phylogenetic X-trees
that satisfy properties (a) and (b) in the last sentence.
Let ps(D,T1) and ps(D,T′) be the parsimony score of
the data D (consisting of the characters in S1 and S2
intertwined arbitrarily) on T1 and on T′, respectively. Let
�P=ps(D,T1)−ps(D,T′), the difference in the parsimony
score of T1 and T′ for the data D.

Notice that we can write �P=�P1 +�P2 where �Pi is
the parsimony score difference of the two trees (for T1
minus that for T′) on the characters in Si. Now, P2 is
a sum of M independent and identically distributed
random variables, each with expected value 0, and finite
variance that is at least c= 2

27 n. Thus, by the Central Limit
Theorem, �P2/

√
cnM (asymptotically with M) follows a

standard normal distribution with mean 0 and standard
deviation at least 1. Moreover, if t is the number of
characters in S1 that are autapomorphic (i.e., trivial but
not unvaried) then any binary tree (in particular T′)
satisfies ps(S1,T′)≤Lm+t, and (by the assumption that
T is compatible with all the characters in T1), ps(S1,T1)=
m+t. Thus �P1 =ps(S1,T1)−ps(S1,T′)≥−m(L−1).

Now T′ has a lower parsimony score than T1 precisely
if �P>0 and the probability of this event is given by:

P(�P2 >−�P1)≥P(�P2 >m(L−1))≥P

(
Z>

m(L−1)√
cnM

)
,

where Z is a standard normal random variable. So, if
m(L−1)√

cnM
≤1, then P(�P>0)≥P(Z>1)≥0.15.

Consequently, the probability P that a binary
phylogenetic X-tree T′ selected uniformly at random is
both more parsimonious for D than T1 and displays
none of the nontrivial characters in S1 is at least P′Q,
where P′ is the probability that T′ satisfies both (a)
Var(�T |T′) at least 2

27 n, and (b) T′ displays none of the
nontrivial characters in S1, while Q is the conditional
probability that such a tree T′ (that satisfies (a) and (b))
is more parsimonious for D than T. We have shown
that P>0.11 and Q>0.15 so P≥P′Q>0.0165. Now, the
expected number of binary phylogenetic X-trees that are
more parsimonious than T1 on D and displays none of
the nontrivial characters in S1 is P ·b(n) where b(n) is the
total number of unrooted binary phylogenetic trees with

n leaves. Since b(n)∼ 1√
2

(
2
e

)n−1
nn−2 (Semple and Steel

2003), and P≥0.0165, we have P ·b(n)≥10n for n≥30, as
claimed. �
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