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The relative efficiencies of the maximum-likelihood (ML), neighbor-joining (NJ), and maximum-parsimony 
(MP) methods in obtaining the correct topology and in estimating the branch lengths for the case of four DNA 
sequences were studied by computer simulation, under the assumption either that there is variation in substitution 
rate among different nucleotide sites or that there is no variation. For the NJ method, several different distance 
measures (Jukes-Cantor, Kimura two-parameter, and gamma distances) were used, whereas for the ML method 
three different transition/ transversion ratios (R) were used. For the MP method, both the standard unweighted 
parsimony and the dynamically weighted parsimony methods were used. The results obtained are as follows: ( 1) 
When the R value is high, dynamically weighted parsimony is more efficient than unweighted parsimony in 
obtaining the correct topology. (2) However, both weighted and unweighted parsimony methods are generally less 
efficient than the NJ and ML methods even in the case where the MP method gives a consistent tree. (3) When 
all the assumptions of the ML method are satisfied, this method is slightly more efficient than the NJ method. 
However, when the assumptions are not satisfied, the NJ method with gamma distances is slightly better in obtaining 
the correct topology than is the ML method. In general, the two methods show more or less the same performance. 
The NJ method may give a correct topology even when the distance measures used are not unbiased estimators 
of nucleotide substitutions. (4) Branch length estimates of a tree with the correct topology are affected more easily 
than topology by violation of the assumptions of the mathematical model used, for both the ML and the NJ 
methods. Under certain conditions, branch lengths are seriously overestimated or underestimated. The MP method 
often gives serious underestimates for certain branches. (5) Distance measures that generate the correct topology, 
with high probability, do not necessarily give good estimates of branch lengths. (6) The likelihood-ratio test and 
the confidence-limit test, in Felsenstein’s DNAML, for examining the statistical significance of branch length 
estimates are quite sensitive to violation of the assumptions and are generally too liberal to be used for actual data. 
Rzhetsky and Nei’s branch length test is less sensitive to violation of the assumptions than is Felsenstein’s test. (7) 
When the extent of sequence divergence is ~5% and when > 1,000 nucleotides are used, all three methods show 
essentially the same efficiency in obtaining the correct topology and in estimating branch lengths. Clearly, the 
simplest method, i.e., the NJ method, is preferable in this case. 

Introduction 

The maximum-likelihood (ML) method of phy- 
logenetic inference (Felsenstein 198 1) has nice statistical 
properties, compared with many other methods. In 
practice, however, it requires a number of simplifying 
assumptions that do not necessarily’ hold with actual 
data. It is therefore important to examine the effects of 
violation of these assumptions on the statistical efficiency 
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of the method. Using simple model trees with a constant 
substitution rate, Fukami-Kobayashi and Tateno ( 199 1) 
have shown that the probability of obtaining the correct 
tree for this method is relatively insensitive to different 
assumptions about the ratio (R) of the transition rate 
(s) to the transversion rate (v) and about the G+C con- 
tent, though the branch length estimates are affected 
substantially. By contrast, using a special model of amino 
acid substitution and actual data, Reeves ( 1992) con- 
cluded that one of the most important factors that reduce 
the efficiency of the ML method is substitution-rate 
variation among different sites. 

In the study of the efficiency of the ML method, it 
is also important to compare its efficiency with that of 
other methods of phylogenetic inference. Saitou and 
Imanishi ( 1989 ) studied the probability of obtaining the 
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correct topology for the ML, maximum-parsimony 
(MP), and a few other distance (e.g., neighbor-joining 
[NJ]) methods and showed that the ML method and 
the NJ method are nearly equally efficient and that these 
two methods are generally more efficient than the MP 
method (Eck and Dayhoff 1966; Fitch 197 1) and than 
Fitch and Margoliash’s ( 1967) method. However, they 
did not examine the effect of violation of the assumptions 
of the ML method on the efficiency of this method. 

The purpose of this paper is to examine the effect 
of violation of the assumptions required for the ML 
method and to compare the statistical efficiency of that 
method with that of the MP and the NJ methods. The 
methods used are primarily computer simulations. 

Mathematical Models and Methods 

The method of our computer simulation was es- 
sentially the same as that of Jin and Nei ( 1990). We 
considered four DNA sequences of 1,000 nucleotides 
each and assumed that they evolve following the model 
trees given in figure 1. The reason we considered only 
four sequences is that the ML method requires an enor- 
mous amount of computer time, in this kind of study. 
We considered various types of nucleotide substitution 
to generate the four “extant” DNA sequences. The se- 
quences thus obtained were used to reconstruct a tree, 
and the tree reconstructed was compared with the model 
tree. This process was repeated 1,000 times for each pa- 
rameter set, except in the case of the ML method, where 
only 100 replications were used, because of the limited 
computational time available. Note that the model trees 
in figure 1 are all unrooted trees and represent the cases 
where the rate of nucleotide substitution varies with 
evolutionary lineage. 

The “extant” DNA sequences were generated by 
using Kimura’s ( 1980) substitution model, under the 
assumption either that the substitution rate is the same 
for all sites or that the rate varies with site according to 

a gamma distribution. To simulate rate heterogeneity 
among different sites, we used three different gamma 
distributions with parameter a = 0.5, 1, and 2 (see Jin 
and Nei 1990). These distributions are shown in figure 
2. Note that the gamma parameter a = 0.5 is close to 
the estimate (0.47) obtained for one of the two hyper- 
variable parts of the control region of human mito- 
chondrial DNA (mtDNA) (Wakeley 1993) and that 
many genes do not have such a low a value (Uzzell and 
Corbin 197 1) . The mtDNA hypervariable region is also 
known to have a high R value, - 15 (Vigilant et al. 
199 1). In other genes, however, it is < 15 (Nei 1987, p. 
84). In the present study we considered the cases R = 0.5, 
9, and 15. 

The methods of phylogenetic inference used were 
the MP, NJ, and ML methods. In the case of the NJ 
method, five different distance measures-i.e., Jukes- 
Cantor (Jukes and Cantor 1969) distance, Kimura 
( 1980) two-parameter distance, and Jin and Nei’s ( 1990) 
gamma distances with a = 0.5, 1, and 2-were used to 
see the effects of distance estimation. The NJ method is 
a special case of the minimum evolution (ME) method 
(Rzhetsky and Nei 1992) and, to be efficient, supposedly 
requires an unbiased distance measure. Therefore, if we 
use different distance measures, we can see how these 
distance measures affect the efficiency of obtaining the 
correct tree. The NJ and ME methods give the same 
tree if the number of sequences used is four. 

In the original paper of Felsenstein ( 198 1 ), a simple 
model of nucleotide substitution with no S/V bias was 
used. In the recent versions (version 2.6 and later) of 
his program package PHYLIP (Felsenstein 199 1 ), he 
modified the model to accommodate the s/v bias, and 
the transition matrix is given by equation (A3) in the 
Appendix. The biological justification of this model is 
not as clear-cut as Hasegawa et al.‘s ( 1985) model but 
permits an analytical solution for the estimate of 

(A) (B) (c) 
FIG. 1 .-Three model trees used for computer simulation 
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FIG. 2.-Gamma distributions with a = 0.5, 1, and 2. g(x) is the probability density. a is the inverse of the square of the coefficient of 
variation. 

the number of nucleotide substitutions per site (d) 
(es. WI). 

In this study, we used the program DNAML of 
PHYLIP version 3.4 to construct an ML tree. This pro- 
gram has several options, and we used the U (user) op- 
tion, in which the tree topology to be tested is specified 
by the user. In this option, the number of iterations for 
searching for the ML value is greater than that of other 
options, such as the G (global search) option (J. Felsen- 
stein, personal communication), so ‘a better tree is ex- 
pected to be obtained. Even in the U option, however, 
branch length estimates were not always reliable. We 
therefore eliminated the maximum limit of iterations, 
which was set to 10 in the source code of DNAML. This 
elimination resulted in termination of iterations, when 
the parameter E in the program is < 10m6, and enhanced 
the accuracy of branch length estimates tremendously. 
The parameters that determine R in DNAML are spec- 
ified by the R value specified in the T option of the 
program and by the base frequencies (see eq. [ A51 in 

the Appendix). The default option of DNAML uses the 
base frequencies in the data. To give the exact parameter 
values that correspond to the Jukes-Cantor and Kimura 
two-parameter models, however, we used 0.25 for all 
the base frequencies with the F option. Version 2.6 and 
later versions of DNAML do not accept R = 0.5. We 
therefore modified the program slightly to accommodate 
this case. 

DNAML has an option for a substitution model 
with several different classes of substitution rates, but 
this model cannot be applied to the case of contin- 
uous variation of substitution rate, which we con- 
sider in this paper. Therefore, we have not used 
this model. 

As mentioned above, the R value in DNAML is 
preassigned rather than estimated from the data. This 
increases the efficiency of the ML method compared 
with the case where R is estimated. To make the NJ 
method comparable with the ML method with this pro- 
cedure, we preassigned the R value in the computation 
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of Kimura’s two-parameter distance (modified Kimura 
distance), as is done in PHYLIP. 

ML 15 denote the ML method with the assumption of 
R = 0.5, 9, and 15, respectively. 

MP trees are usually produced by disregarding the 
s/v bias (Eck and Dayhoff 1966; Fitch 197 1) . However, 
it is possible to take care of this bias as well as the vari- 
ation in substitution rate among different sites if we use 
the dynamically weighted parsimony (DWP) method of 
Sankoff and Cedergren ( 1983) and Williams and Fitch 
( 1990). We have therefore used this DWP method as 
well as the standard MP method. Williams and Fitch’s 
algorithm of DWP has nine different ways of character 
weighting (three initial weightings times three position 
weightings). Our study showed that among all these op- 
tions the substitution method of initial weighting plus 
the quadratic position weighting was the best in our sim- 
ulation. We therefore present only the results from this 
option, in this paper. The effect of violation of the as- 
sumptions required for each tree-making method was 
evaluated by computing the frequency of obtaining trees 
whose topology is correct among all the replications and 
by computing how much the average estimates of branch 
lengths deviate from the true values. 

Table 1 shows that when the rate of nucleotide sub- 
stitution is the same for all sites with R = 0.5 and when 
tree A in figure 1 is used, the correct tree topology was 
obtained for all tree-making methods irrespective of the 
a and R values used for tree estimation. However, when 
R = 9 was used for generating DNA sequences, P = 88, 
for the standard MP method. The P value for the MP 
method further declines as R increases to 15. This is due 
to the fact that, when R = 9 and 15, multiple and parallel 
transitional changes can occur at the same nucleotide 
sites. In this case, however, if we use DWP, the P value 
increases significantly. By contrast, the NJ and ML 
methods generated the correct topology in all or nearly 
all replications, irrespective of the a and R values used 
for distance estimation or phylogenetic inference. How- 
ever, this does not mean that these methods are perfect 
for phylogenetic inference, because in some cases the 
estimates of branch lengths are poor, as will be men- 
tioned later. 

Results 
Topologies 
Case of Equal Rate 

The proportions (P) of trees with the correct to- 
pology obtained among all replicate simulations ( 1,000 
replications for MP and NJ and 100 replications for 
ML), for the case of equal rate of nucleotide substitution 
for all sites, are given in table 1. In this table, NJD and 
NJK represent the NJ method with Jukes-Cantor one- 
parameter distance and Kimura two-parameter distance, 
respectively. NJG represents the NJ method with two- 
parameter gamma distances (Jin and Nei 1990). The a 
value listed below NJG represents the gamma parameter 
for computing a gamma distance. MLOS, ML9, and 

When tree B is used as the model tree, the efficiency 
of the standard MP method declines dramatically, and 
for R = 9 and 15, P = 0. This is of course due to the 
fact that there are many multiple and parallel transitional 
changes, which are neglected in parsimony analysis. This 
effect is known to be serious when the lengths of branches 
b2 and b4 in figure 1 are long relative to those of b, and 
b3 and tends to give an incorrect topology (inconsis- 
tency) as the number of nucleotides increases to infinity 
(Felsenstein 1978). A theoretical study (N. Takezaki, 
unpublished data) indicates that when branch lengths 
bl , b3, and b5 = 0.05, the inconsistency of a parsimony 
tree occurs whenever b2 and bb 20.394 for R = 0.5; 
20.302 for R = 9; and 20.292 for R = 15. Our results 
are consistent with these theoretical expectations. By 
contrast, the MP method gives a consistent tree for the 

Table 1 
P in the Case of Equal Nucleotide Substitution Rate among Different Sites 

NJG 

R MP DWP NJD NJK a = 0.5 a = 1 a = 2 ML0.5 ML9 ML1 5 

Model tree A: 
0.5 . . . . . 100 100 100 100 100 100 100 100 100 100 
9 . . . . . . . . . . . . . 88 99 99 100 100 100 100 100 100 100 
15 . . . . . 83 97 99 100 too 100 100 100 100 100 

Model tree B: 
0.5 . . 2 3 98 98 100 100 100 100 96 94 
9 . . . . . . . . . . . . . 0 90 21 92 99 99 99 72 100 100 
15 . . . . 0 89 16 90 99 99 98 50 98 99 
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case of model tree A. However, to obtain the correct 
tree with a 100% probability for this model tree with R 
= 9 or 15, a number of nucleotides $1,000 must be 
used. The behavior of DWP is interesting. When R = 0.5, 
it is as bad as the standard MP method. However, when 
R = 9 or 15, the P value for DWP is higher than that 
for NJD and is nearly as high as that for NJK. This 
indicates that DWP is effective when R is high but not 
when R = 0.5. 

The NJ method is known to give consistent trees 
whenever unbiased distance measures are used (Saitou 
and Nei 1987; DeBry 1992). Thus, the P value for NJD 
is high when R = 0.5 but declines as R increases. This 
is because the Jukes-Cantor distance does not take into 
account the s/v bias. This bias is considered in the Ki- 
mura distance, so NJK gives high P values even for R 
= 9 and 15. However, to obtain the correct topology 
with a 100% probability, the number of nucleotides used 
must be > 1,000. Note that NJK gives biased estimates 
of nucleotide substitutions when the number of nucleo- 
tides examined is small (Tajima 1993). 

It is interesting to see that, when the gamma dis- 
tances are used, NJG gives P = 100 for R = 0.5 and 
gives P > 98 for R = 9 and 15. This result is counter- 
intuitive, because in the present case the rate of nucleo- 
tide substitution is the same for all sites. However, this 
paradox can be resolved if we note the condition for 
obtaining the correct topology for the NJ method. Saitou 
and Nei ( 1987) have shown that this condition for the 
case of four sequences is 

where dii is the distance between sequences i andj. When 
there is no rate heterogeneity among different sites, the 
gamma distance is known to give an overestimate of 
nucleotide substitutions, and the extent of overestima- 
tion increases as the true distance (number of nucleotide 
substitutions) increases and as the a value decreases. 
Thus, d14 and d23 are more overestimated than d12 and 
d34, and dz4, which is the largest distance, is most seri- 
ously overestimated. Therefore, relation ( 1) holds more 
easily for gamma distances than for the Jukes-Cantor or 
the Kimura distance. This explains why NJG shows a 
higher P value than NJD or NJK. 

The ML method shows a high P value when the 
correct R value is used for computing the ML value. 
Thus, when R = 0.5 is used for generating DNA se- 
quences, the ML method with the assumption of R = 0.5 
(ML0.5 ) gives P = 100. However, P declines as the R 

value assumed for computing the ML value increases 
(e.g., as in ML9 and ML 15 ) . In the case of R = 9, how- 
ever, P is 100 for ML9 and ML 15 but is 72 for ML0.5. 
When R = 15, P is nearly 100 for ML9 and ML 15 but 
is 50 for ML0.5. The same tendency was observed in 
Fukami-Kobayashi and Tateno’s ( 199 1) study, though 
these authors considered the case where the molecular 
clock works. This indicates that the ML method is 
slightly more sensitive than the NJG method to violation 
of the assumptions made in the estimation of topology. 

In actual data analysis, of course, it is possible to 
compute the ML value for various R values and then to 
choose the R value that gives the highest ML value. The 
ML method with this chosen R value is expected to give 
a better topology. However, the purpose of this study is 
to examine the effect of violation of the assumptions of 
the ML model, and the s/v bias was used merely as an 
example. The evolution of actual DNA sequences usu- 
ally deviates from any model of nucleotide substitution 
currently available for the ML method (see, e.g., Tamura 
1994)) and it is not always easy to take all the deviations 
into account mathematically. Therefore, the results of 
this simulation raise some doubts about the robustness 
of the ML method. 

Case of Varying Rate 
In most tree-making methods, when the rate of nu- 

cleotide substitution varies according to a gamma dis- 
tribution, the P value for model tree A is generally lower 
than when the rate is equal, as expected (table 2). Ex- 
ceptions are the cases of NJG in which a gamma distance 
with a proper a value is used. Thus, NJG with a = 0.5, 
1, or 2 gives a high P value for the case of the gamma 
distance generated with a = 0.5, 1, or 2, respectively. 
However, it is interesting that NJG with a = 0.5 tends 
to show a high P value even when the a value used for 
generating sequence data is >0.5. This is caused by 
overestimation of long pairwise distances when a smaller 
a value is used for estimating distances, as discussed ear- 
lier. When a is large, the P values are close to those for 
the case of equal rates (a = co ). NJD and NJK usually 
show a P value smaller than does NJG, as expected. 

The P value for the ML method is generally higher 
when a correct R value is used than when an incorrect 
R value is used. However, ML1 5 tends to show a high 
P value even when the R value used for sequence gen- 
eration is 0.5 or 9. Generally speaking, the ML method 
is as good as the NJG method in obtaining the correct 
topology. By contrast, the MP method generally shows 
a smaller P value. DWP is generally better than MP and 
is nearly as good as NJK. 

Table 3 shows the P values for model tree B for the 
case of rate heterogeneity among sites. In this case, the 
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Table 2 
P Obtained for Model Tree A in the Case of Varying Nucleotide Substitution Rate 

NJG 

R MP DWP NJD NJK a = 0.5 a= 1 a=2 ML0.5 ML9 ML15 

a = 0.5: 
0.5 . 
9 . . . . 
15 

a= 1: 
0.5 
9 . . . . 
15 

a = 2: 
0.5 
9 . . . . 
15 . . . 

88 90 90 90 100 98 95 98 95 91 
62 93 77 87 95 91 86 88 99 99 
55 89 72 84 95 88 84 84 97 97 

95 96 98 98 100 100 100 100 99 99 
69 97 87 96 99 99 97 97 100 100 
63 92 83 93 100 98 95 95 100 100 

98 98 100 100 100 100 100 100 100 99 
80 
72 

98 96 99 100 100 99 99 99 99 
95 93 99 100 99 99 98 100 100 

MP method rarely chooses the correct topology, though 
DWP increases P substantially when R = 9 and 15. NJD 
and NJK are also very poor at choosing the correct to- 
pology, except for the case of R = 0.5 and a = 2. (NJK 
shows a relatively high P value when R = 9 or 15 and 
a = 2.) This occurs because in this case the Jukes-Cantor 
and Kimura distances seriously underestimate the true 
distances when these true distances are large. NJG shows 
a high P value when R = 0.5 and the a value used for 
sequence generation is the same as that used for distance 
estimation. For NJG, P declines as R increases, for a 
given value of a, as expected. NJG again shows a higher 
P value when the a value used for distance estimation 
is smaller than that used for sequence generation. 

The P value for the ML method is considerably 
lower when the substitution rate varies with nucleotide 
site than when it is the same for all sites (table 3). This 
is particularly so for the case of a = 0.5. In this case, 
even if the same R value is used for generating sequence 
data and for estimating topology, P is only 48 for ML0.5. 
When the R value used for generating sequence data is 
greater than that used for estimating topology, the P 
value is quite low in all cases. By contrast, when the 
former is smaller than the latter, P tends to be as high 
as the P for the case in which both Rs are the same, 
except for the case of R = 0.5. At any rate, these results 
show that ML is slightly more sensitive to violation of 
the assumptions in estimating topology than is NJG. 

In model tree C, the expected length of each branch 
is one-tenth the length of the corresponding branch in 
tree A. We included this case because sequence data of 
this magnitude of differentiation are often used in phy- 
logenetic analysis (Hedges et al. 1990; Vigilant et al. 
199 1). The P values for this tree are given in table 4. In 

this case, the P values are slightly smaller than those ii 
table 1, except for MP with R = 9 and 15. This ha: 
occurred because in the present case the true length o 
the interior branch ( b5) was so small that there were 
cases in which the three possible topologies were indis 
tinguishable. (The observed value of this branch lengtl 
sometimes becomes zero.) At any rate, table 4 show 
that the P values are virtually the same for all three tree 
making methods, whether there is an s/v bias or rate 
heterogeneity among different sites. This result indicate 
that when the extent of sequence difference is small, i 
is sufficient to use a simple statistical method such a 
NJ for inferring phylogenetic trees. 

Branch Lengths 
Case of Equal Rate 

In phylogenetic inference, it is important not onl: 
to determine correct topologies but also to obtain gooc 
estimates of branch lengths. Of course, estimation o 
branch lengths is meaningless unless the topology of i 
tree is correctly inferred. In the following, we therefon 
consider estimates of branch lengths only for the case: 
where the correct topology is obtained. To make the 
estimates for different tree-building methods compara 
ble, we also consider the same 100 replications in whicl 
ML trees were estimated. 

Table 5 shows estimates of the lengths of branche 
61 (=b3), b2 (=&), and b5 of tree A (fig. 1) for the cast 
of equal rates. These are average estimates of brand 
lengths for all the replications in which the correct to 
pology was obtained. Here the values for bl and b2 arc 
the averages of the estimates for bl and b3 and of the 
estimates for b2 and b4, respectively. The branch length 
for an MP tree were estimated by using Fitch’s ( 197 1 
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Table 3 
P Obtained for Model Tree B in the Case of Varying Nucleotide Substitution Rate 

NJG 

R MP DWP NJD NJK a = 0.5 a= 1 a=2 ML0.5 ML9 ML15 

a = 0.5: 
0.5 
9 . . . . 
15 . . . 

a = 1: 
0.5 
9 . . 
15 . . . 

a = 2: 
0.5 
9 . 
15 . . . 

1 2 2 2 89 43 15 48 23 18 
0 69 2 29 75 43 22 20 70 71 
0 74 3 23 70 41 20 20 76 77 

3 4 17 17 100 94 67 80 43 44 
0 84 5 60 95 82 56 41 91 92 
0 81 3 48 94 78 52 31 90 94 

2 3 51 51 100 100 95 97 80 80 
0 86 9 77 97 94 81 53 94 94 
0 86 5 68 96 94 80 34 94 95 

the R value increases. However, the length of the shorter 
exterior branch br (as well as b3) tends to be overesti- 
mated, and the extent of overestimation slightly increases 
as R increases. 

The branch length estimates for the NJ method 
depend on the distance measure used. (The branch 
length estimates for the NJ method are identical with 
those for the ME method, for the case of four sequences.) 
When the rate of nucleotide substitution is the same for 
all sites, NJK is supposed to give good estimates of 

method, whereas those for DWP were not computed, 
because they do not represent the number of nucleotide 
substitutions. As is well known, the MP method is ex- 
pected to give underestimates of branch lengths when 
branches are long and multiple substitutions occur at 
the same sites. This is exactly the case for branch b2 (and 
b4), which is longest among the three branches exam- 
ined. The branch length of bs, of which the expected 
value is 0.05, is also slightly underestimated. The extent 
of underestimation of these branch lengths increases as 

Table 4 
P Obtained for Model Tree C 

NJG 

R MP DWP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

Equal nucleotide substitution rate 
among different sites: 

0.5 . . . . . . . . . . . . . . . . . . . . . . 
9 . . . . . . . . . . . . . . . . . . . . . . . 
15 . . . . . . . . . . . . . . . . . . . . . . 

a = 0.5: 

98 98 98 98 99 99 99 98 98 96 
96 96 98 98 99 99 98 98 99 99 
96 95 98 98 99 98 98 96 98 98 

0.5 . . . . . . . . . . . . . . . . . . . . . . 
9 . . . . . . . . . . . . . . . . . . . . . . . 
15 . . . . . . . . . . . . . . . . . . . . . . 

a= 1: 

95 97 98 98 98 98 98 97 95 95 
87 88 93 93 95 94 93 96 98 98 
87 87 92 93 94 93 93 93 95 95 

0.5 . . . . . . . . . . . . . . . . . . . . . . 
9 . . . . . . . . . . . . . . . . . . . . . . . 
15 . . . . . . . . . . . . . . . . . . . . . . 

a = 2: 

97 97 98 98 98 98 98 99 99 99 
93 90 97 97 97 97 97 97 97 97 
93 92 96 96 97 97 97 98 97 97 

0.5 . . . . . . . . . . . . . . . . . . . . . . 97 98 
9 . . . . . . . . . . . . . . . . . . . . . . . 93 94 
15 . . . . . . . . . . . . . . . . . . . . . . 95 94 

98 98 98 98 98 100 98 98 
97 97 98 98 98 99 99 99 
97 97 98 97 97 98 98 98 

NOTE.-In the MP method only the case where the correct tree only was obtained was included 
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Table 5 
Average Branch Length Estimates (X10’) for the Trees with Correct Topology in Model Tree 
A with Equal Rate 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b, 5.6 5.0 5.0 -3.7 2.3 3.9 5.0 5.3 5.4 
b2 19.4 24.8 24.8 49.3 34.3 29.0 24.8 31.9 33.5 
b5 . . . . . 4.8 5.0 5.0 18.9 9.9 7.1 5.0 5.3 5.4 

R = 9: 
b, . 5.9 5.7 5.1 -12.7 0.6 3.5 5.0 5.1 5.1 
b2 . . . 17.1 21.9 24.8 67.6 39.3 30.9 22.2 24.8 25.6 
b5 . . . 4.6 3.7 5.0 31.3 12.7 8.0 4.5 5.0 5.1 

R = 15: 
b, . . . . 6.0 5.8 5.1 -13.7 0.5 3.5 4.9 5.1 5.1 
b2 . . 16.8 21.5 24.8 69.7 39.8 31.1 21.9 24.2 24.9 
b5 . . 4.5 3.5 5.0 32.8 13.0 8.1 4.5 5.0 5.1 

NOTE-The true lengths of branches b,, b2, and b, are 0.05, 0.25, and 0.05, respectively. The standard errors of 
average branch length estimates were generally very small, so they are not presented. 

branch lengths for all values of R, whereas NJD is ex- 
pected to give good results only for R = 0.5. Indeed, 
these methods give good estimates of branch lengths for 
all of these cases. When R > 0.5, the Jukes-Cantor dis- 
tance tends to give underestimates of nucleotide substi- 
tutions. Therefore, NJD gives underestimates of branch 
lengths for bZ and b5 but overestimates for bl . This ten- 
dency is somewhat similar to that of the MP method. 

As mentioned earlier, gamma distances give over- 
estimates of the number of nucleotide substitutions when 
there is no variation in substitution rate among different 
sites. In the case of the NJ method, the lengths (II, 12, 
and Is, respectively) of branches b, , b2, and b5 are given 
by 

II = 42/z - k&&13)/4, 

12 = 42/z + (d24-d13)/4, (2) 

Is = (&+2&+&d/4 - 42 , 

if d14 = d23 and di2 = ds4. Therefore, if d24 is overesti- 
mated disproportionately compared with other dis- 
tances, I;! and Is are overestimated, whereas II is under- 
estimated. Table 5 clearly shows that this is the case. 
The extent of overestimation of 12 and IS and the extent 
of underestimation of II are most extreme when a = 0.5 
and decline as a increases, as expected. In the case of a 
= 0.5, II can be negative. However, despite the overes- 
timation or underestimation of branch lengths, NJG 
gives the correct tree with a high probability, for the 
reason discussed earlier (table 1). 

The ML method gives good estimates of branch 
lengths when the same R value as that used for sequence 
generation is used. Thus, ML0.5, ML9, and ML1 5 give 
good results for the cases of R = 0.5, 9, and 15, respec- 
tively. However, if ML9 and ML1 5 are used for the case 
of R = 0.5, all the branch lengths, especially b2, are 
overestimated. By contrast, if ML0.5 and ML9 are used 
for the case of R = 15, the branch length for b2 tends to 
be underestimated. The overestimation or underesti- 
mation of branch lengths when R is incorrectly assumed 
occurs because the incorrect assumption shifts the like- 
lihood surface and the ML value is obtained for an in- 
correct set of branch length estimates (N. Takezaki, un- 
published data). 

The branch length estimates for model tree B are 
presented in table 6. With this model tree, MP produced 
the correct topology in only 4/ 100 replications for the 
case of R = 0.5. Yet, the average value for the branch 
length of b5 for these four cases is not far from the true 
value (0.05). However, the branch length of b2 is sub- 
stantially underestimated, whereas that of b, is overes- 
timated. When R = 9 or 15, no correct topologies were 
obtained (see table 1). 

For R = 0.5, NJD and NJK give essentially the 
same branch length estimates, and the estimates are all 
close to the true values. For R = 9 and 15, NJD gives 
underestimates for branches b2 and b5 but overestimates 
for bl. This pattern is the same as that for model tree 
A. By contrast, NJK gives fairly good estimates of branch 
lengths, but the branch length of bl tends to be under- 
estimated, whereas that of bS tends to be overestimated. 
This underestimation or overestimation apparently oc- 

r *m ‘-c-S. 
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Table 6 
Average Branch Length Estimates (X10’) for the Trees with Correct Topology in Model Tree 
B with Equal Rate 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b, . . 6.4 5.0 5.0 -79.1 -12.6 -.8 5.1 5.8 5.9 
bZ . . 32.4 49.8 49.8 204.5 93.8 67.2 49.8 307.0 530.5 
b5 . . . . 5.6 4.9 4.9 99.4 26.0 12.2 4.8 5.3 5.5 

R = 9: 
b, . . . . 6.8 4.5 -301.7 -34.3 -6.1 4.9 4.9 4.9 
b2 . . . . . 39.4 50.4 482.4 129.1 77.2 41.0 50.0 53.9 
b5 . . . . . 3.0 5.7 335.0 50.7 18.7 4.6 5.2 5.4 

R = 15: 
6, . . . . . 6.7 4.5 -371.5 -38.4 -6.6 4.9 5.0 5.0 
bZ . . . . . . 37.9 50.4 563.7 136.2 79.0 39.9 46.9 50.0 
b5 . . . . . . . . 2.4 5.6 405.5 54.7 19.0 4.5 4.8 5.1 

NOTE-The true lengths of branches b,, bZ, and 6, are 0.05, 0.50, and 0.05, respectively. 

curred because the Kimura distance is known to give 
overestimates of nucleotide substitutions when the dis- 
tance is large and the number of nucleotides used is 
relatively small (Tajima 1993). If the number of nu- 
cleotides used increases infinitely, all branch lengths are 
expected to converge to the correct values with the cor- 
rect topology. 

The extent of overestimation of pairwise distances 
by gamma distances increases as the true distance in- 
creases, as mentioned earlier. Since the true branch 
length of b2 is two times greater in model tree B than in 
model tree A, gamma distances are expected to give an 
even higher degree of overestimation of branch lengths 
for b2 and bS and of underestimation of branch length 
for bl in tree B than in tree A. This is indeed the case, 
as will be seen from table 6. Particularly in the case of 
NJG with a = 0.5, the extent of overestimation and 
underestimation is very serious. Nevertheless, the tree 
topology is estimated correctly with a high probability. 
This indicates that reconstruction of topology does not 
necessarily require good estimates of branch lengths. 

The ML method gives good estimates of branch 
lengths when the correct R value is assigned in phylo- 
genetic inference. However, when the assigned R value 
is higher than the true R value, the branch length of b2 
is overestimated. This overestimation is very serious 
when the true R value is 0.5. By contrast, when the as- 
signed R value is smaller than the true value, branch 
lengths tend to be underestimated. 

Case of Varying Rate 
Table 7 shows the average branch length estimates 

for tree A, for the case of varying rate with a = 0.5. The 

MP method in this case gives even more underestimates 
than in the case of equal rate, except for bl (see table 
5). This is reasonable because at sites with high substi- 
tution rate the extent of underestimation is serious, 
whereas at sites with low substitution rate the number 
of nucleotide substitutions is smaller than the average. 
NJD and NJK also give underestimates of branch 
lengths, except for bl . Therefore, these methods have a 
property similar to that of MP, in branch length esti- 
mation. However, the extent of underestimation for b2 
is smaller in NJ than in MP, but that for bS is smaller 
in MP than in NJ. 

Since the sequence data were generated with the 
assumption of varying rate with a = 0.5, NJG with a 
= 0.5 gives best estimates of branch lengths for all values 
of R. However, if we use a = 1 or 2 for estimating gamma 
distances, the branch length for bs is underestimated. 
The ML method also gives underestimates of all branch 
lengths. 

Since the results for the case where sequence data 
were generated with the assumption of a = 1 were in- 
termediate between those for the cases of a = 0.5 and a 
= 2, we shall not present them here. Instead, we shall 
discuss the results for the case of a = 2. In this case, 
NJG with a = 2 is expected to give good estimates of 
branch lengths. Table 8 shows that this is indeed the 
case. However, if a = 0.5 or 1 is used incorrectly for 
estimating gamma distances, the branch lengths for b2 
and b5 tend to be overestimated, whereas the branch 
length of bl is underestimated. This occurs for the same 
reason as that mentioned in the case of equal rate. As 
noted earlier, however, this has an effect to produce the 
correct topology with a high probability. MP, NJD, NJK, 
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Table 7 
Average Branch Length Estimates (X102) for the Trees with Correct Topology in Model Tree 
A with u = 0.5 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b, . . . . . 5.3 5.6 5.6 4.9 5.4 5.5 4.7 4.8 4.8 
b2 . . . . . . 14.1 16.2 16.2 25.1 20.1 18.0 17.7 20.9 21.4 
b5 . . . . . 4.1 2.1 2.1 5.1 3.3 2.6 3.7 4.2 4.3 

R = 9: 

b, . . . . . . . 5.1 5.3 5.2 4.8 5.3 5.4 4.2 4.4 4.4 
bZ . . . . . . . . 11.9 13.8 15.3 25.3 19.1 16.7 15.0 16.5 16.8 
b5 . . . . 3.8 1.9 2.2 5.4 3.3 2.6 3.6 3.6 3.6 

R = 15: 

b, . . . . . 5.1 5.3 5.2 4.8 5.3 5.4 4.2 4.3 4.3 
b2 . . 11.5 13.4 14.9 25.2 18.9 16.5 14.5 15.8 16.1 
b5 . . . . . 3.7 1.8 2.2 5.4 3.2 2.6 3.5 3.5 3.5 

and ML all tend to give underestimates of branch 
lengths, except for bi . In the case of R = 0.5, however, 
ML9 and ML 15 tend to give overestimates of bZ, for the 
reason mentioned earlier. Because of this, ML9 tends 
to give rather good estimates of branch lengths, though 
the model of the ML method does not satisfy the con- 
dition for generating sequence data. 

The branch length estimates for model tree B with 
a = 0.5 are given in table 9. As expected, NJG with a 
= 0.5 gives good estimates of branch lengths, though 
the estimate for br tends to be an underestimate, whereas 
that for bs tends to be an overestimate. This underesti- 
mation or overestimation apparently occurs because the 
gamma distance is known to give biased estimates of 

nucleotide substitutions when the distance is long and 
the number of nucleotides examined is relatively small 
(Rzhetsky and Nei, accepted). To obtain good estimates 
of branch lengths for this case, we must use either a 
number of nucleotides 9 1,000 or an unbiased estimator 
given by Rzhetsky and Nei. When NJG with a = 1 OI 

2 is used for estimating branch lengths, the branch 
lengths of bZ and b5 are underestimated, whereas that 01 
b, is overestimated. MP, NJD, NJK, and ML all give 
underestimates of branch lengths, except for bl , for the 
first three methods. 

Table 10 shows the results for the case of model 
tree B with a = 2. In this case, NJG with a = 2 obviously 
gives good estimates of branch lengths, but NJG with a 

Table 8 
Average Branch Length Estimates (X102) for the Trees with Correct Topology in Model Tree 
A with a = 2 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b, . . 
b2 . . . 
b5 . . . 

R = 9: 
b, . . . 
b2 . . . 
b5 . . . 

R= 15: 
b, . . . 
b2 . . . 
bs . . . 

5.6 5.6 5.6 1.5 4.4 5.1 5.0 5.2 5.2 
. 17.6 21.6 21.6 38.7 28.5 24.8 22.4 28.0 29.1 

4.5 3.5 3.5 11.6 6.5 4.8 4.5 4.9 5.0 

5.7 5.8 5.4 -0.1 3.8 4.9 4.7 4.8 4.8 
15.3 18.9 21.2 46.0 30.2 24.9 19.7 21.8 22.3 
4.2 2.8 3.7 16.2 7.6 5.1 4.2 4.5 4.6 

5.7 5.8 5.4 -0.2 3.7 4.9 4.6 4.8 4.8 
14.9 18.5 21.0 46.9 30.4 24.9 19.3 21.2 21.7 
4.2 2.7 3.7 16.7 7.7 5.2 4.1 4.4 4.5 
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Table 9 
Average Branch Length Estimates (X10’) for the Trees with Correct Topology in Model Tree 
B with a = 0.5 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b, . . 
bz . . 
b5 . . 

R = 9: 
b, . . 
bz . . 
b5 . . 

R= 15: 
b, . . 
b2 . . 
b5 . . 

6.4 6.2 6.2 4.2 6.1 6.4 4.7 4.7 4.7 
21.0 27.6 27.6 50.6 36.1 30.7 29.1 39.3 41.5 

4.8 1.5 1.5 5.9 2.7 2.1 3.7 4.6 4.9 

. 5.6 5.7 5.7 3.8 5.6 5.9 4.3 4.4 4.4 

. 17.6 21.8 25.6 50.7 33.9 27.9 23.5 27.4 28.3 
. . . 4.6 1.8 2.1 6.8 3.3 2.4 3.9 3.4 3.5 

. . . . 6.0 6.0 3.9 5.8 6.1 4.3 4.4 4.4 

. . . . 21.0 24.3 50.4 33.2 27.0 22.2 25.8 26.6 
. . . . 1.6 1.8 6.9 3.1 2.2 3.9 3.3 3.3 

= 0.5 or 1 gives overestimates of the branch lengths for 
b2 and bs but underestimates for bl , as in the case of 
model tree A. MP gives a serious underestimate for bZ 
but a slight overestimate for bl . NJD and NJK also give 
underestimates for b2 and b5. ML gives underestimates 
of branch lengths for bz, except when R = 0.5 was used 
for ML9 and ML1 5. In the latter case, ML gives serious 
overestimates of the branch length. 

In the case of model tree C, all the methods gave 
branch length estimates that were generally close to the 
true values, though the branch length of b2 was either 
slightly overestimated or slightly underestimated when 
the assumptions were violated (data not shown). This 
indicates that when the extent of sequence divergence 

is small, even branch lengths can be estimated by any 
of the three methods. (The MP method showed a general 
tendency to give slight underestimates for bZ but slight 
overestimates for b, .) 

Statisti\cal Tests 

One of the advantages of the ML method over the 
MP method is that it provides statistical tests of topo- 
logical differences and of branch length estimates (Fel- 
senstein 198 l), and these tests are incorporated into 
DNAML. However, some of the tests, such as the branch 
length test, are very crude, as is mentioned in the 
DNAML manual. Yet, several authors (e.g., Gaut and 
Clegg 199 1; Ward et al. 199 1; Cooper et al. 1992) have 

Table 10 
Average Branch Length Estimates (X102) for the Trees with Correct Topology in Model Tree 
B with a = 2 

NJG 

BRANCH MP NJD NJK a = 0.5 a=1 a=2 ML0.5 ML9 ML15 

R = 0.5: 
b , ....... 
b2 ....... 
b5 ....... 

R = 9: 
b , ....... 
b2 ....... 
bs ....... 

R = 15: 
bl ....... 
bz ....... 
bs ....... 

6.5 6.5 6.5 
27.6 39.9 39.9 

5.1 2.6 2.6 

. . . 6.7 4.6 

. . . 31.6 41.7 

. . . 2.4 4.6 

. . . 6.9 5.6 

. . . 29.5 39.3 

. . . 2.5 3.6 

-17.9 1.1 5.0 5.0 5.4 5.7 
111.5 63.9 49.9 41.9 129.9 432.3 

33.5 10.3 5.1 4.3 5.1 5.1 

-26.5 0.5 4.6 4.7 4.8 4.7 
131.4 112.2 48.0 33.9 41.1 43.6 
44.2 65.1 5.6 4.3 4.5 4.7 

-36.7 -0.9 4.3 4.7 4.9 4.8 
151.7 70.0 50.2 32.7 38.3 40.1 
56.6 13.4 6.2 4.5 4.2 4.3 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/11/2/261/1113044 by guest on 06 M
ay 2023



272 Tateno et al. 

used these tests, disregarding the warning in the manual. 
We therefore examined the reliability of the branch 
length test in DNAML. There are two methods of testing 
branch lengths in DNAML. One is the likelihood-ratio 
test (LRT), and the other is the confidence-limit test 
(CLT). Both tests are conducted by making a number 
of simplifying assumptions (Felsenstein 198 1, 199 1). 
We applied these two methods to every set of sequence 
data generated for model trees A and B, to study the 
accuracy of the methods ( 100 replications for each pa- 
rameter set). 

In the present case we have four sequences, so there 
are three different unrooted trees (see fig. 3). If a test is 
valid, it should choose one of them, which is likely to 
be correct, and reject (or possibly not reject) the other 
two. In the case of the branch length test, this means 
that if the length of the interior branch of one topology 
is statistically significant, the lengths of interior branches 
for two other topologies should not be significant. In 
other words, the lengths of interior branches of two or 
three topologies cannot be simultaneously significant for 
the same set of sequence data. In practice, however, the 
application of the LRT and the CLT often produces 
results in which either all three or two of the three pos- 
sible topologies are statistically significant, as shown in 
figure 3. 

Table 11 shows all the results of the LRT and the 
CLT, for the case of model tree A. When all the as- 
sumptions of a likelihood model are satisfied, the results 
of the LRT and the CLT are quite reasonable; the lengths 
of interior branches of two or three topologies almost 
never become simultaneously significant. However, 
when the assumptions are not satisfied, there are many 
cases in which the lengths of interior branches of two or 
three topologies become simultaneously significant in 
both the LRT and the CLT. This is so even for the case 

of a = 2, where the variation in substitution rate is rel- 
atively mild. These results raise serious doubts about the 
general utility of the LRT and the CLT in DNAML, 
since variation in substitution rate is quite common. 
Although the results for model tree B are not presented, 
they were more seriously flawed than those for tree A. 

We have done a similar test of interior branches 
for NJ trees by using Rzhetsky and Nei’s ( 1992) ME 
method. (In the case of four sequences, the NJ and ME 
trees are identical with each other.) In this case, two or 
three topologies rarely show a significant interior branch 
length simultaneously even when the assumptions for 
estimating distances are not satisfied. 

Table 12 shows the number of replications in which 
an incorrect tree became statistically significant by LRT 
and CLT in DNAML for tree A, whether the correct 
one also became significant or not. The ML method 
rarely identifies an incorrect tree as a correct tree, if all 
the assumptions of the model are satisfied. However, 
when the assumptions are not satisfied, it may identify 
an incorrect tree as a correct one, with a high probability. 
By contrast, this probability is quite low in the case of 
NJ trees (table 13). In the case of model tree B, however, 
the probability was appreciably high, though not as high 
as for the ML method. 

The above results indicate that the statistical tests 
in DNAML are quite sensitive to violation of the as- 
sumptions of the ML models, and thus they should not 
be used as a general test. By contrast, the statistical tests 
proposed by Rzhetsky and Nei ( 1992) are quite robust 
when the assumptions are violated. Yet, when the dis- 
tances for some pairs of sequences are very large, this 
test also may lead to an erroneous conclusion. 

Discussion 

The MP method is commonly used in phylogenetic 
inference from molecular data. As shown by Sourdis 

logeL = - 3992.4 logeL = - 4001.3 log,L = - 4003.5 

(A) (B) CC) 

FIG. 3.-Three different trees obtained by the ML method for the same set of sequence data. The sequence data used here were generated 
under the assumption of equal rate with R = 9, but the trees were estimated by ML0.5. The true tree used is tree B in fig. 1. In this case, the 
true topology (B) has an ML value lower than that for the incorrect topology (A ). The length of the interior branch was significant at the 1% 
level in all three topologies according to the LRT of DNAML. The lengths of all exterior branches were also statistically significant. 
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Table 11 
Number of Replications in Which the Lengths of Interior Branches of Two or Three Different Topologies Became 
Simultaneously Significant by the Statistical Tests of DNAML for Model Tree A 

R = 0.5 R=9 R= 15 

TEW ML0.5 ML9 ML15 ML0.5 ML9 ML15 ML0.5 ML9 ML15 

Equal nucleotide substitution rate 
among different sites: 

LRT( 3) . . . 
CLT( 3) . . 
LRT( 2) . . . 
CLT( 2) . . . 

a = 0.5: 
LRT( 3) . . . 
CLT( 3) . 
LRT(2) . 
CLT( 2) . 

a = 2: 
LRT( 3) . 
CLT( 3) . . . 
LRT( 2) . 
CLT(2) . 

0 47 80 11 0 0 23 0 0 
0 27 48 5 0 0 11 0 0 
0 48 20 68 1 1 64 1 1 
0 63 51 66 1 1 71 0 0 

2 92 98 81 11 15 88 9 9 
0 81 89 72 3 3 80 5 4 

73 8 2 19 55 50 12 59 55 
64 19 11 28 51 48 20 57 51 

0 76 94 36 0 0 47 0 0 
0 51 72 18 0 0 35 0 0 

13 24 6 61 10 10 52 14 11 
8 48 28 77 3 4 62 8 6 

NOTE.-The results for the case of a = 1 are not included, to save space. They were intermediate between those of the cases of a = 0.5 and a = 2. 
’ LRT(3) and LRT(2) represent the cases where the LRT showed a significant interior branch length for three and two different topologies, respectively, at the 

5% level. CLT(3) and CLT(2) represent the cases where the CLT showed a significant interior branch length for three and two different topologies, respectively. 

and Nei ( 1988) and Nei ( 199 1 ), this method is useful 
when the number of nucleotide differences per site is 
small for all comparisons of sequences and when the 
number of nucleotides examined is very large. In other 
cases, however, this method is less powerful in obtaining 
the correct tree than other methods, such as the NJ and 
ML methods (see, e.g., Saitou and Imanishi 1989; Jin 
and Nei 1990). The present study shows that even when 
the MP method produces a consistent tree, its efficiency 
in obtaining the correct tree is lower than that of the NJ 
and ML methods (table 1). 

The efficiency of obtaining the correct tree (P) in 
the NJ method depends on the distance measure used, 
if the extent of sequence divergence is high. Thus, with 
model tree B the NJ methods with different distance 
measures give different P values, particularly when the 
a value is small. It is therefore important to use appro- 
priate distance measures if one wants to use the NJ 
method for phylogenetic inference. When there is an 
s/v bias and there is no other complication, this bias 
can easily be taken care of by using Kimura distance. If 
there is a sufficient amount of sequence data, it is also 
possible to estimate the a value (see, e.g., Uzzell and 
Corbin 197 1; Kocker and Wilson 199 1; Tamura and 
Nei 1993; Wakeley 1993). However, the actual pattern 
of nucleotide substitution is generally more complicated 
than the models used in this paper. It is therefore pref- 
erable to examine the suitability of various distance 

measures for the data set to be analyzed and to choose 
the best possible measure for distance estimation. Gold- 
man ( 1993) and Tamura ( 1994) developed ML methods 
of model selection for this purpose, whereas A. Rzhetsky 
and M. Nei (unpublished data) developed another ap- 
proach. If we use these methods, it is possible to choose 
a statistically efficient distance measure and use it for 
constructing an NJ tree. 

It should be mentioned that application of these 
statistical methods to model selection is necessary only 
when the extent of sequence divergence is large. If the 
number of nucleotide substitutions per site for the most 
divergent sequences is relatively small (say <0.2), most 
distance measures give essentially the same estimate. In 
this case, it is sufficient to use Jukes-Cantor distance or 
Kimura distance (or even the proportion of nucleotide 
differences) for constructing NJ trees. 

Some authors are concerned with the fact that the 
NJ method generates only one final tree and that this 
tree may not be the best one in terms of the criterion of 
ME. Actually, computer simulations (Saitou and Im- 
anishi 1989; Rzhetsky and Nei 1992) have shown that 
in most cases the NJ tree has the same topology as that 
of the real (global) ME tree, unless the number of se- 
quences used is very large. Therefore, in practice, one 
can regard the NJ tree as the ME tree. Of course, if one 
wants to find the real ME tree, one can use Rzhetsky 
and Nei’s ( 1992) method. Rzhetsky and Nei ( 1993) have 
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Table 12 
Number of Replications in Which the Length of the Interior Branch of a Wrong Tree was Statistically Significant by the 
LRT and the CLT of DNAML for Model Tree A 

R = 0.5 R=9 R= 15 

TEST ML0.5 ML9 ML15 ML0.5 ML9 ML15 ML0.5 ML9 ML15 

Equal nucleotide substitution rate 
among different sites: 

LRT . . . . . . . . 0 95 100 79 1 1 87 1 1 
CLT . . . . . . . . . . . . . . . . . . . . . 0 90 99 71 1 1 82 0 0 

a = 0.5: 
LRT . . . . . . 75 100 100 100 66 65 100 68 64 
CLT . . . . . . . . 64 100 100 100 54 51 100 63 56 

a= 1: 
LRT . . . . . . . . 23 100 100 99 26 28 99 33 26 
CLT . . . . . . . . . . 13 100 100 99 13 15 99 17 11 

a = 2: 
LRT . . . . . 13 100 100 97 10 10 99 14 11 
CLT . . . . . . . . 8 99 100 95 3 4 97 8 6 

NOTE.-The significance level (type I error) used is 5%. 

shown that the expected value of the sum of all branch 
lengths is smallest for the true tree, irrespective of the 
number of sequences and the topology of the tree, as 
long as unbiased estimates of evolutionary distances are 
used. Therefore, the ME (or NJ) method has a solid 
theoretical foundation. 

For obtaining the correct tree, the ML method is 
slightly more sensitive to violation of the assumptions 
made than is the NJ method with gamma distances, 
when the evolutionary distance is long (table 3). The 
branch length estimates obtained by the ML method are 
also affected substantially by violation of the assump- 
tions. Of course, as mentioned earlier, it is possible to 
compute the likelihood values under different mathe- 
matical models and choose the model that maximizes 

Table 13 
Number of Replications in Which the Length of the Interior 
Branch of a Wrong NJ Tree was Stastically Significant by 
the Rzhetsky-Nei Test for Model Tree A 

R = 0.5 R=9 R= 15 

NJD NJK NJD NJK NJD NJK 

Equal rate . . . 0 0 0 0 0 0 
a = 0.5 . . . . . . 3 3 4 1 3 2 
a= 1 . . . . . . . . 0 0 2 0 4 1 
a=2 . . . . . . . . 0 0 2 2 3 2 

NOTE.-NJG was used because the mathematical formula for the covariance 
of gamma distances was not available. The significance level (type I error) used 
is 5%. 

the likelihood. This feature has already been incorpo- 
rated into Felsenstein’s DNAML program, with respect 
to R. However, this adds more computational time to 
the ML method, which is already computation intensive. 
Furthermore, the enhancement of the P value by this 
procedure does not necessarily make the ML method 
better than the NJ method. 

In the present study, we used a large number of 
iterations for obtaining the ML value, to increase the 
accuracies of the topology and branch length estimates 
of an ML tree, as mentioned earlier. We could do this 
because we used only four DNA sequences. When the 
number of sequences is large, however, this will increase 
the computational time tremendously. Therefore, in ac- 
tual data analysis it will be necessary to limit the number 
of iterations to - 10, as in DNAML. Our preliminary 
study has shown that this procedure decreases the ac- 
curacy of the ML tree, particularly of the branch length 
estimates. 

As mentioned earlier, table 4 shows that when the 
extent of sequence divergence is small, all tree-making 
methods give essentially the same results. In this case, 
therefore, there is no need to use a time-consuming tree- 
making method such as the MP or the ML method. 
Furthermore, the MP method is expected to produce 
many equally parsimonious trees for this case, unless a 
large number of nucleotides are examined, so that it is 
difficult to know the real splitting pattern of sequences 
(see, e.g., Hedges et al. 1992; Brown et al. 1993). The 
NJ or ME method usually does not have this problem 
and gives a unique final tree. 
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The present study is based on a simple case of four where &’ = gT + gC, gR = gA + &, A = gTgC/&’ + g&G/ 
sequences, so that some of our conclusions may not be gR, B = gT& + gAgG, and, C = gygR (Hasegawa et al. 
applicable to the case of a larger number of sequences. 1985). 
It seems to be important to extend this type of simulation The model of nucleotide substitution in Felsen- 

to these cases in the future. stein’s DNAML program is not given explicitly in the 
manual of the program but is described by Kishino and 

Addendum Hasegawa ( 1989). The substitution matrix in this model 

After this paper was submitted for publication, can be written in the following way: 

Yang ( 1993) developed an algorithm for obtaining an 
ML tree by taking into account continuous variation in A T C G 

substitution rate among different nucleotide sites. How- 4 PgT Pgc (VgR+P)& 
ever, this method requires much more computational PgA @/&+P)gc 

time than does DNAML, and it seems to be difficult to C PgA @/gY+fbT 

;: * 
G 

use when the number of sequences is moderately large G @kR+&!A PgT Pgc 

(five or more sequences). (A3) 
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APPENDIX purines ( aRg_j) , where 
Mathematical Models Used in the ML Method of 
Phylogenetic Inference 6 

The model of nucleotide substitution in Felsen- aY =---&+P. 

stein’s DNAML program takes into account the differ- (A4) 
ences in rates of transition and transversion and the base 6 

compositions. This model is different from Hasegawa et 
aR =---&+P, 

al.‘s ( 1985) model, in which the matrix of substitution 
rates is gy = g-i- + gc, and gR = gA + go. Thus, Cly and oR are 

A T C G 
each a sum of p (a parameter that determines the trans- 
verSiOn rate) and the amount (6/gy, 6/&) of transi- 

A bT fk agG 
tional change that exceeds p. When gy = gR, we have 

T p8A a& bG ’ 
(Al ) ay = oR = ~1, and this model reduces to Hasegawa 

G tkA agT kG 
et al’s. 

G agA fkT hk 
Note that R in the DNAML model is given by 

An element hij of this matrix represents the rate of sub- R = (A6/P+B)/C. (A3 
stitution from nucleotide i to j (i, j = A, T, C, G). All 
the elements in each row sum to one, SO that a diagonal 
element hii = 1 - Cj ho (i# j), though this is not pre- 

In the case of the Jukes-Cantor model, where gi = 0.25 
and 6 = 0, R becomes 0.5. In the case of the Kimura 

sented. gi is the proportion of the ith nucleotide. The 
transition rate and the transversion rate from nucleotide 

two-parameter model, where gi = 0.25, R is given by 

i to j are ogj and pgj, respectively. 
s/p + ‘12 = a/(2j3). 

In this model the proportions of transitional (P) 
With this model we can derive the following equa- 

tions for p and Q 
and transversional (Q) nucleotide differences between 
a pair of sequences that diverged time t ago are given by 

p = 2 B+(A-B)e-*P’- 8Tgc e-*kYa+gRP)t 
[ gY 

p = 2 [ B+(A-B)e-*P’-Ae-*‘8+P)‘] ; 

(Ah) 
Q = 2C( l-e-*@) . 

_ gAgG ,-*(&a+fiP)t 1 The simplicity of these equations compared with equa- 

, (AZ) tion (A2) makes it possible to derive an analytical for- 
gR mula for estimating the number of nucleotide substi- 

Q = 2C( l-e-*@) , 
tutions per site (d = 2( 1 -Ci gihii) t). The estimates 
(d) of d and of its variance [V(d)] are given by 
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(AT) 

and 

V(d) = ; [a2F+b2&(aP+bQ)2] , (A@ 

where n is the number of nucleotides examined, and 

AC 

a = AC - C&2 - (A-B)&2 ’ 

b= 
A(A-B) A-B-C 

AC- 012 - (A-B)&/2 - C- &/2 ’ 
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